

#### CLIENT: DASSO USA 6060 Boat Rock BLVD. SW Suite 800 Atlanta, GA 30336

Test Report No: RJ7637P-1rev2 Revision Date: May 17, 2022

- **SUBJECT:** dassoXTR Epic Cognac and dassoXTR Classic Espresso bamboo composite deckboards of nominal 1" and 2" thickness.
- **SAMPLING DETAIL:** Test samples were witnessed at the location of manufacture in Xiandai Zhuchanye Yuanqu, Gaobu Town, Zixi Country, Fuzhou City, Jiangxi Province China by QAI personnel Fey Han on July 31, 2020. QAI confirmed the products sampled for testing were representative of normally manufactured product in accordance with ICC-ES AC85 Section 3.1.
- **DATE OF RECEIPT:** Sample was received at QAI Rancho Cucamonga, CA facility on September 20, 2020 in good condition.
- **TESTING PERIOD:** September 27, 2020 June 28, 2021.
- AUTHORIZATION: QAI Proposal 20JL05211r3 dated May 29, 2020 signed by Avery Chua, CEO on May 29, 2020.
- **TEST PROCEDURE:** Testing in accordance with ICC-ES AC174 Acceptance Criteria for Deck Board Span Ratings and Guardrail Systems (Guards and Handrails) approved January 2012 (editorially revised December 2014) referencing ASTM D7032-17 Standard Specification for Establishing Performance Ratings for Wood Plastic Composite and Plastic Lumber Deck Boards, Stair Treads, Guards and Handrails.
- **TEST RESULTS:** Based on evaluation by QAI of Dasso USA dassoXTR bamboo boards Classic Espresso and Epic Cognac of 1" and 2" thickness, were found to have maximum span ratings outlined below:

| PRODUCT                    | SPAN RATING   |               | WIND UPLIFT   | INSTALLATION                       |
|----------------------------|---------------|---------------|---------------|------------------------------------|
|                            | DECKING       | STAIR TREAD   |               |                                    |
| 1" (0.8") Classic Espresso | 100 psf @ 24" | 100 psf @ 16" | -78 psf @ 24" | One Panda Claw 2 hidden clip at    |
| 1" (0.8") Epic Cognac      | 100 psf @ 24" | 100 psf @ 16" | -77 psf @ 24" | each joist with #7 1-3/4" length   |
|                            |               |               |               | screw.                             |
| 2" Classic Espresso        | 100 psf @ 24" | Not Evaluated | -75 psf @ 24" | Two #10 x 3.5" screws at each      |
| 2" Epic Cognac             | 100 psf @ 24" | Not Evaluated | -75 psf @ 24" | joist location, 2" from deck ends. |

**Prepared By** 

Jany Burn

Larry Burmer Lab Manager Physical Testing

Signed for and on behalf of **QAI Laboratories Inc.** 

Landone

Matt Lansdowne Director of Engineering



# SUMMARY OF REQUIREMENTS AND RESULTS

| Property                                           | Test Method                   | Number of<br>Specimens | Test<br>Requirement | Test Results                                                                                                                                                                                                                                                                                       | Section |
|----------------------------------------------------|-------------------------------|------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Flexural Strength<br>Modulus (MOR)                 | ASTM D6109                    | 10 Each<br>Formulation | Report              | Classic Espresso:<br>MOR 10,175 psi<br>Epic Cognac<br>MOR: 14,466 psi                                                                                                                                                                                                                              | 1.1     |
| Flexural Stiffness<br>(El)                         | ASTM D6109                    | 10 Each<br>Formulation | Report              | Classic Espresso:<br>El: 2,553 psi<br>Epic Cognac<br>El: 2,542 psi                                                                                                                                                                                                                                 | 1.1     |
| Temperature<br>Effect, Low -20ºF<br>Flexural       | ASTM D7032<br>/ ASTM<br>D6109 | 10 Each<br>Formulation | Report<br>Change    | Classic Espresso:<br>MOR 12,509 psi (0% change)<br>El: 2,811 psi (0% change)<br>Epic Cognac<br>MOR 14,830 psi (0% change)<br>El: 2,788 psi (0% change)                                                                                                                                             | 1.2     |
| Temperature<br>Effect, High<br>125ºF Flexural      | ASTM D7032<br>/ ASTM<br>D6109 | 10 Each<br>Formulation | Report<br>Change    | Classic Espresso:<br>MOR 9,433 psi (-7% change)<br>El: 2,501 psi (-2% change)<br>Epic Cognac<br>MOR 12,397psi (-14% change)<br>El: 2,366 psi (-8% change)                                                                                                                                          | 1.3     |
| Moisture Effect,<br>Submerged<br>Flexural          | ASTM D7032<br>/ ASTM<br>D6109 | 10 Each<br>Formulation | Report<br>Change    | Classic Espresso:<br>MOR 10,806 psi (0% change)<br>El: 2,416 psi (-5% change)<br>Epic Cognac<br>MOR 15,893 psi (0% change)<br>El: 2,442 psi (-4% change)                                                                                                                                           | 1.4     |
| Ultraviolet<br>Resistance (2000<br>hours) Flexural | ASTM G155<br>/ ASTM<br>D6109  | 5 Each<br>Formulation  | Report<br>Change    | Classic Espresso Control:<br>MOR 11,327 psi<br>El: 1,667 psi<br>Classic Espresso Exposed:<br>MOR 14,488 psi (0% change)<br>El: 1,841 psi (0% change)<br>Epic Cognac Control:<br>MOR 14,596 psi<br>El: 1,791 psi<br>Epic Cognac Exposed:<br>MOR 14,892 psi (0% change)<br>El: 1,851 psi (0% change) | 2.1     |
| Freeze-Thaw<br>Flexural                            | ASTM D7032<br>/ ASTM<br>D6109 | 5 Each<br>Formulation  | Report<br>Change    | Classic Espresso:<br>MOR 10,423 psi (0% change)<br>El: 2,654 psi (0% change)<br>Epic Cognac<br>MOR 13,645 psi (-6% < 10% no change)<br>El 2,357 psi (-7% < 10% no change)                                                                                                                          | 2.2     |



| Biodeterioration<br>(Fungi)                                     | AWPA E10                      | 5 Each<br>Formulation                 | Must Exceed<br>Control                                                                                                               | Classic Espresso: Complies<br>Epic Cognac: Complies                                                                                                                                                                                                                                                                       | 3.1 |
|-----------------------------------------------------------------|-------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Biodeterioration<br>(Termite)                                   | ASTM D3345                    | 5 Each<br>Formulation                 | Must Exceed<br>Control                                                                                                               | Classic Espresso: Complies<br>Epic Cognac: Complies                                                                                                                                                                                                                                                                       | 3.2 |
| Surface Burning<br>Characteristics                              | ASTM E84                      | Each<br>Formulation,<br>Thickest      | FSI ≤ 200                                                                                                                            | 2" Classic Espresso: FSI 25<br>2" Epic Cognac: FSI 25                                                                                                                                                                                                                                                                     | 4.0 |
| Duration of Load                                                | ASTM D7031                    | 15 of Each<br>Formulation<br>Thinnest | No Failures<br>or Tertiary<br>Creep                                                                                                  | 1" Classic Espresso: Complies<br>1" Epic Cognac: Complies                                                                                                                                                                                                                                                                 | 5.0 |
| Determination of<br>Unadjusted<br>Allowable Load<br>Deck Board  | ASTM D7032<br>/ ASTM<br>D6109 | 28 Each<br>Product<br>Thinnest        | ≥ 2.5 psf x<br>Adjustments                                                                                                           | Classic Espresso: 414 psf @ 24"<br>Epic Cognac: 357 psf @ 24"                                                                                                                                                                                                                                                             | 6.1 |
| Determination of<br>Unadjusted<br>Allowable Load<br>Stair Tread | ASTM D7032                    | 28 Each<br>Product<br>Thinnest        | Classic<br>Espresso:<br>≥ 809 lbs<br>Failure<br>≤0.125''<br>@323 lbs<br>Epic Cognac:<br>≥ 875 lbs<br>Failure<br>≤0.125''<br>@340 lbs | Classic Espresso:<br>Ultimate: 1,587 lbs<br>0.084" @ 323 lbs<br>Epic Cognac<br>Classic Espresso:<br>Ultimate: 2,209 lbs<br>0.088" @ 340 lbs                                                                                                                                                                               | 6.2 |
| Mechanical<br>Holding Tests                                     | ASTM D330                     | Each Product<br>Installation          | Ultimate<br>Load / FS 3.0                                                                                                            | Classic Espresso 1' Thick Panda Claw 2<br>Hidden Clip:<br>Allowable: -80 lbs negative<br>Classic Espresso 2'' Thick Face Screws:<br>Allowable: 75 lbs negative<br>Epic Cognac 1'' Thick Panda Claw 2<br>Hidden Clip: :<br>Allowable: -80 lbs negative<br>Epic Cognac 2'' Thick Face Screws:<br>Allowable: 76 lbs negative | 6.3 |



## 1. DECK BOARD FLEXURAL TESTS ADJUSTMENT FACTORS

**Test Procedure:** Testing was conducted in accordance with Section 4.4 of ASTM D7032 referencing ASTM D6109. This testing was conducted to evaluate temperature and moisture effects by comparing exposed materials to control samples.

All test samples were cut to 25" length for testing client requested 24" span rating. After sample cutting, samples were conditioned at standard conditioning of  $75^{\circ}F \pm 3^{\circ}F$  and  $50\% \pm 5\%$  relative humidity for a minimum of 48 hours prior to exposure and testing detailed below.

As dassoXTR Classic Espresso 1" and 2" thickness profiles are of the same product formulation and testing for flexural tests of adjustment factors are based on product formulation response to environmental conditions, testing was done on 1" thickness products to evaluate response for both profile thickness types. See Appendix E for product details.

As dassoXTR Epic Cognac 1" and 2" thickness profiles are of the same product formulation and testing for flexural tests of adjustment factors are based on product formulation response to environmental conditions, testing was done on 1" thickness products to evaluate response for both profile thickness types. See Appendix E for product details.

All deck board products were measured to have thickness of 5.4 inches width.

All loading was conducted at 1% strain/min with a cross head speed of 1.332 in./min ( $R = 0.00185 \times L^2/t$  or  $R = 0.00185 \times 24^2/0.8$ ) where 0.8 was the measured thickness of the dassoXTR bamboo decking products.

3% strain was taken from the non-simplified method of ASTM D7032 at 4.5 inches.

Adjustment Factors were determined from the exposures outlined below as the decrease in flexural strength and flexural stiffness values after exposures detailed in this report from control specimens for the 1" dassoXTR Classic Espresso and Epic Cognac deck boards.



# 1.1 FLEXURAL STRENGTH (MOR) AND FLEXURAL STIFFNESS (EI) CONTROL

After conditioning, 10 samples of each Classic Espresso and Epic Cognac were tested for flexural strength (MOR) and flexural stiffness (EI) following ASTM D6109 on a 24-inch support span.

#### Test Requirements:

**Report Values** 

#### **Test Results:**

MOR and EI Flexural Strength Values for dassoXTR Classic Espresso

|           |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness |                | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.799     | 1,483          | 10295      | 0.911          | 2,286          | -              |
| 2         | 0.800     | 1,424          | 9886       | 0.687          | 2,792          | -              |
| 3         | 0.801     | 1,369          | 9504       | 0.791          | 2,360          | -              |
| 4         | 0.800     | 1,163          | 8074       | 0.682          | 2,312          | -              |
| 5         | 0.800     | 1,748          | 12135      | 0.950          | 2,606          | -              |
| 6         | 0.799     | 1,544          | 10719      | 0.783          | 2,730          | -              |
| 7         | 0.799     | 1,693          | 11753      | 0.801          | 2,982          | -              |
| 8         | 0.801     | 1,356          | 9413       | 0.730          | 2,447          | -              |
| 9         | 0.801     | 1,666          | 11565      | 0.798          | 2,771          | -              |
| 10        | 0.801     | 1,211          | 8407       | 0.711          | 2,247          | -              |
| AVERAGE   | 0.80      | 1466           | 10175      | 0.784          | 2,553          | -              |
| ST DEV    | 0.0       | 199            | 1384       | 0.1            | 257.0          | -              |
| COV       | 0.1       | 14             | 14         | 11.4           | 10.1           | -              |

-Not achieved.

#### CONTROL CLASSIC ESPRESSO MOR: 10175 psi

## CONTROL CLASSIC ESPRESSO EI: 2553 psi

MOR and EI Flexural Strength Values for dassoXTR Epic Cognac

| Completio | Thiskness | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Inickness |                | (psi)      | (IN.)          | (psi)          |                |
| 1         | 0.800     | 2,034          | 14135      | 1.122          | 2,547          | -              |
| 2         | 0.800     | 2,243          | 15588      | 1.422          | 2,433          | -              |
| 3         | 0.800     | 1,828          | 12704      | 0.996          | 2,543          | -              |
| 4         | 0.801     | 1,945          | 13517      | 1.013          | 2,699          | -              |
| 5         | 0.801     | 2,000          | 13899      | 1.132          | 2,574          | -              |
| 6         | 0.799     | 2,427          | 16866      | 1.359          | 2,769          | -              |
| 7         | 0.799     | 2,142          | 14886      | 1.325          | 2,378          | -              |
| 8         | 0.798     | 2,129          | 14795      | 1.243          | 2,517          | -              |
| 9         | 0.799     | 1,931          | 13419      | 1.204          | 2,335          | -              |
| 10        | 0.800     | 2,137          | 14851      | 1.190          | 2,621          | -              |
| AVERAGE   | 0.80      | 2082           | 14466      | 1.201          | 2,542          | -              |
| ST DEV    | 0.0       | 173            | 1201       | 0.1            | 135.7          | -              |
| COV       | 0.1       | 8              | 8          | 11.8           | 5.3            | -              |

-Not achieved.

## CONTROL EPIC COGNAC MOR: 14466 psi

## CONTROL EPIC COGNAC EI: 2542 psi



## 1.2 FLEXURAL STRENGTH (MOR) AND FLEXURAL STIFFNESS (EI) LOW TEMPERATURE

10 samples of each Classic Espresso and Epic Cognac were tested for low temperature effects on flexural strength (MOR) and flexural stiffness (EI) following Section 4.5.1 of ASTM D7032. Samples were conditioned at  $-20^{\circ}F \pm 4^{\circ}F$  for a minimum of 48 hours until samples were at temperature saturation. Samples were removed and immediately tested for flexural strength (MOR) and flexural stiffness (EI) at 24-inch support span following ASTM D6109.

#### Test Requirements:

Compare Values to Control Flexural Strength (MOR) and Flexural Stiffness (EI).

#### Test Results:

Low Temperature MOR and EI Flexural Strength Values for dassoXTR Classic Espresso

| •         |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness |                | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.801     | 1560           | 10825      | 0.769          | 2,708          | -              |
| 2         | 0.801     | 1952           | 13546      | 0.919          | 2,866          | -              |
| 3         | 0.802     | 2013           | 13969      | 0.950          | 2,847          | -              |
| 4         | 0.799     | 1854           | 12866      | 0.889          | 2,827          | -              |
| 5         | 0.799     | 2212           | 15350      | 1.023          | 3,025          | -              |
| 6         | 0.800     | 1478           | 10256      | 0.752          | 2,584          | -              |
| 7         | 0.800     | 1562           | 10839      | 0.764          | 2,700          | -              |
| 8         | 0.799     | 1646           | 11422      | 0.788          | 2,797          | -              |
| 9         | 0.801     | 1759           | 12206      | 0.834          | 2,820          | -              |
| 10        | 0.801     | 1990           | 13809      | 0.916          | 2,938          | -              |
| AVERAGE   | 0.80      | 1803           | 12509      | 0.860          | 2,811          | -              |
| ST DEV    | 0.0       | 240            | 1669       | 0.1            | 125.3          | -              |
| COV       | 0.1       | 13             | 13         | 10.8           | 4.5            | -              |

-Not achieved.

## LOW TEMP CLASSIC ESPRESSO MOR: 12509 psi CHANGE: 0% El: 2811 psi CHANGE: 0%

Low Temperature MOR and EI Flexural Strength Values for dassoXTR Epic Cognac

| ľ         |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness | ,              | (psi)      | (in.)          | (psi) ໌        |                |
| 1         | 0.800     | 1,993          | 13850      | 0.986          | 2,710          | -              |
| 2         | 0.800     | 2,263          | 15726      | 1.093          | 2,802          | -              |
| 3         | 0.800     | 2,147          | 14920      | 1.090          | 2,718          | -              |
| 4         | 0.800     | 2,356          | 16372      | 1.064          | 2,996          | -              |
| 5         | 0.800     | 2,323          | 16143      | 1.044          | 2,997          | -              |
| 6         | 0.798     | 1,979          | 13753      | 1.025          | 2,611          | -              |
| 7         | 0.798     | 1,709          | 11876      | 0.895          | 2,541          | -              |
| 8         | 0.800     | 2,299          | 15976      | 1.045          | 2,918          | -              |
| 9         | 0.800     | 1,960          | 13621      | 0.999          | 2,656          | -              |
| 10        | 0.801     | 2,311          | 16060      | 1.057          | 2,929          | -              |
| AVERAGE   | 0.80      | 2134           | 14830      | 1.030          | 2,788          | -              |
| ST DEV    | 0.0       | 215            | 1493       | 0.1            | 164.9          | -              |
| COV       | 0.1       | 10             | 10         | 5.7            | 5.9            | -              |

-Not achieved.

LOW TEMP CLASSIC ESPRESSO MOR: 14830 psi CHANGE:

El: 2788 psi CHANGE: 0%



## 1.3 FLEXURAL STRENGTH (MOR) AND FLEXURAL STIFFNESS (EI) HIGH TEMPERATURE

10 samples of each Classic Espresso and Epic Cognac were tested for high temperature effects on flexural strength (MOR) and flexural stiffness (EI) following Section 4.5.1 of ASTM D7032. Samples were conditioned at  $125^{\circ}F \pm 4^{\circ}F$  for a minimum of 48 hours until samples were at temperature saturation. Samples were removed and immediately tested for flexural strength (MOR) and flexural stiffness (EI) at 24-inch support span following ASTM D6109.

#### Test Requirements:

Compare Values to Control Flexural Strength (MOR) and Flexural Stiffness (EI).

#### Test Results:

High Temperature MOR and EI Flexural Strength Values for dassoXTR Classic Espresso

|           |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness |                | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.802     | 1,274          | 8847       | 0.708          | 2,427          | -              |
| 2         | 0.801     | 1,156          | 8028       | 0.672          | 2,322          | -              |
| 3         | 0.798     | 1,221          | 8479       | 0.687          | 2,411          | -              |
| 4         | 0.800     | 1,209          | 8396       | 0.696          | 2,386          | -              |
| 5         | 0.801     | 1,598          | 11097      | 0.878          | 2,586          | -              |
| 6         | 0.799     | 1,522          | 10569      | 0.759          | 2,799          | -              |
| 7         | 0.798     | 1,207          | 8382       | 0.740          | 2,276          | -              |
| 8         | 0.801     | 1,439          | 9993       | 0.759          | 2,575          | -              |
| 9         | 0.800     | 1,427          | 9910       | 0.811          | 2,459          | -              |
| 10        | 0.800     | 1,531          | 10632      | 0.759          | 2,772          | -              |
| AVERAGE   | 0.80      | 1358           | 9433       | 0.747          | 2,501          | -              |
| ST DEV    | 0.0       | 162            | 1128       | 0.1            | 178.3          | -              |
| COV       | 0.2       | 12             | 12         | 8.4            | 7.1            | -              |

-Not achieved.

## HIGH TEMP CLASSIC ESPRESSO MOR: 9433 psi CHANGE: -7% El: 2501 psi CHANGE: -2%

High Temperature MOR and EI Flexural Strength Values for dassoXTR Epic Cognac

|           |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness |                | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.798     | 1,836          | 12,814     | 1.149          | 2,421          | -              |
| 2         | 0.799     | 1,899          | 13,220     | 1.277          | 2,301          | -              |
| 3         | 0.802     | 1,955          | 13,506     | 1.289          | 2,310          | -              |
| 4         | 0.800     | 1,699          | 11,797     | 1.100          | 2,173          | -              |
| 5         | 0.800     | 1,625          | 11,283     | 1.016          | 2,238          | -              |
| 6         | 0.801     | 1,844          | 12,770     | 1.156          | 2,396          | -              |
| 7         | 0.800     | 1,894          | 13,151     | 1.303          | 2,270          | -              |
| 8         | 0.800     | 1,891          | 13,136     | 1.224          | 2,307          | -              |
| 9         | 0.801     | 1,611          | 11,159     | 0.933          | 2,432          | -              |
| 10        | 0.798     | 1,593          | 11,120     | 0.895          | 2,516          | -              |
| AVERAGE   | 0.80      | 1785           | 12396      | 1.134          | 2,336          | -              |
| ST DEV    | 0.0       | 138            | 949        | 0.1            | 103.1          | -              |
| COV       | 0.2       | 8              | 8          | 13.0           | 4.4            | -              |

-Not achieved.

HIGH TEMP CLASSIC ESPRESSO MOR: 12396 psi CHANGE: -14% El: 2336 psi CHANGE: -8%



## 1.4 FLEXURAL STRENGTH (MOR) AND FLEXURAL STIFFNESS (EI) MOISTURE EFFECTS

10 samples of each Classic Espresso and Epic Cognac were tested for moisture effects on flexural strength (MOR) and flexural stiffness (EI) following Section 4.5.1 of ASTM D7032. Samples were submerged in a water bath maintained at standard conditioning for a minimum of 48 hours until samples were considered to be saturated. Samples were removed and immediately tested for flexural strength (MOR) and flexural stiffness (EI) at 24-inch support span following ASTM D6109.

#### **Test Requirements:**

Compare Values to Control Flexural Strength (MOR) and Flexural Stiffness (EI).

#### Test Results:

Moisture Effects MOR and EI Flexural Strength Values for dassoXTR Classic Espresso

|           |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness |                | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.802     | 1,732          | 12019      | 0.916          | 2,654          | -              |
| 2         | 0.801     | 1,667          | 11568      | 0.921          | 2,534          | -              |
| 3         | 0.799     | 1,729          | 11998      | 1.083          | 2,362          | -              |
| 4         | 0.798     | 1,582          | 10978      | 0.989          | 2,339          | -              |
| 5         | 0.800     | 1,538          | 10673      | 0.902          | 2,389          | -              |
| 6         | 0.800     | 1,827          | 12678      | 1.066          | 2,503          | -              |
| 7         | 0.801     | 1,454          | 10090      | 0.890          | 2,298          | -              |
| 8         | 0.800     | 1,415          | 9819       | 0.917          | 2,153          | -              |
| 9         | 0.802     | 1,248          | 8660       | 0.687          | 2,430          | -              |
| 10        | 0.800     | 1,381          | 9583       | 0.759          | 2,496          | -              |
| AVERAGE   | 0.80      | 1557           | 10806      | 0.913          | 2,416          | -              |
| ST DEV    | 0.0       | 184            | 1274       | 0.1            | 140.4          | -              |
| COV       | 0.2       | 12             | 12         | 13.3           | 5.8            | -              |

-Not achieved.

## MOISTURE CLASSIC ESPRESSO MOR: 10806 psi CHANGE: 0% EI: 2416 psi CHANGE: -5%

Moisture Effects MOR and EI Flexural Strength Values for dassoXTR Epic Cognac

|           |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness | . ,            | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.800     | 2,333          | 16246      | 1.521          | 2,416          | -              |
| 2         | 0.800     | 2,208          | 15376      | 1.422          | 2,369          | -              |
| 3         | 0.801     | 2,316          | 16128      | 1.521          | 2,445          | -              |
| 4         | 0.800     | 2,360          | 16434      | 1.620          | 2,414          | -              |
| 5         | 0.789     | 2,090          | 14554      | 1.335          | 2,435          | -              |
| 6         | 0.800     | 2,064          | 14373      | 1.378          | 2,357          | -              |
| 7         | 0.799     | 2,589          | 18029      | 1.714          | 2,568          | -              |
| 8         | 0.800     | 2,509          | 17472      | 1.686          | 2,535          | -              |
| 9         | 0.800     | 2,207          | 15369      | 1.485          | 2,452          | -              |
| 10        | 0.800     | 2,147          | 14951      | 1.388          | 2,426          | -              |
| AVERAGE   | 0.80      | 2282           | 15893      | 1.507          | 2,442          | -              |
| ST DEV    | 0.0       | 173            | 1205       | 0.1            | 65.8           | -              |
| COV       | 0.4       | 8              | 8          | 8.7            | 2.7            | -              |

-Not achieved.

MOISTURE EPIC COGNAC MOR: 15893 psi CHANGE: 0% EI

EI: 2442 psi CHANGE: -4%



## 2. DECK BOARD FLEXURAL TESTS END USE ADJUSTMENT FACTORS

**Test Procedure:** Testing was conducted in accordance with Section 4.4 of ASTM D7032 referencing ASTM D6109. This testing was conducted to ultraviolet (UV) resistance and freeze-thaw resistance by comparing exposed materials to control samples.

UV samples were cut to 9" length, 1.75 inch width from 1" products to accommodate placement in ASTM G155 compliant UV test equipment. Control samples for comparison where cut to 9" length, 1.75" width at 1" thickness.

Freeze-thaw test samples were cut to 24" length per the requested span.

After sample cutting, samples were conditioned at standard conditioning of  $75^{\circ}F \pm 3^{\circ}F$  and  $50\% \pm 5\%$  relative humidity for a minimum of 48 hours prior to exposure and testing detailed below.

As dassoXTR Classic Espresso 1" and 2" thickness profiles are of the same product formulation, and testing for flexural tests of adjustment factors are based on product formulation response to environmental conditions, testing was done on 1" thickness products to evaluate response for both profile thickness types, as the thicker geometry is considered to be of stronger cross section.

As dassoXTR Epic Cognac 1" and 2" thickness profiles are of the same product formulation, and testing for flexural tests of adjustment factors are based on product formulation response to environmental conditions, testing was done on 1" thickness products to evaluate response for both profile thickness types.

All loading was conducted at 1% strain/min with a cross head speed of 1.332 in./min ( $R = 0.00185 \times L^2/t$  or  $R = 0.00185 \times 24^2/0.8$ ) where 0.8 was the measured thickness of the dassoXTR bamboo deck board products.

3% strain was taken from the non-simplified method of ASTM D7032 at 4.5 inches.

End Use Adjustment Factors were determined from the exposures outlined below as the decrease in flexural strength and stiffness values in excess of 10% after exposures noted from control specimens for the 1" dassoXTR Classic Espresso and Epic Cognac deck boards.



# 2.1 ULTRAVIOLET (UV) RESISTANCE

10 test samples of dassoXTR Classic Espresso and Epic Cognac were removed from standard conditioning cut to dimensions of 5.4 inches width x 10 inches length x 0.80 inches product thickness to fit into the ASTM G155 UV exposure apparatus. Following sample preparation, 5 specimens were exposed for UV resistance following ASTM G155 Cycle 1, with 0.35 W/(m<sup>2</sup>-nm) at 340 nm wavelength, with an exposure of 102 minutes of light at 63°C black panel temperature with 18 minutes of light and water spray at air temperature for 2,000 hours in accordance with ASTM D7032. 5 control specimens were placed back into conditioning for match testing for flexural strength.

Following UV exposure, UV exposed samples and 5 control samples were tested following ASTM D6109, with the UV exposed face located in tension during flexural testing.

The control and after UV weathered samples were tested at a span of 8 inches.

#### **Test Requirements:**

Compare UV Values to Control Flexural Strength (MOR) and Flexural Stiffness (EI).

#### **Test Results:**

Control Samples MOR and EI Flexural Strength Values for dassoXTR Classic Espresso

|           |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness |                | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.787     | 1,419          | 10,973     | 0.185          | 1,599          | -              |
| 2         | 0.788     | 1,488          | 11,016     | 0.171          | 1,727          | -              |
| 3         | 0.786     | 1,406          | 10,902     | 0.170          | 1,711          | -              |
| 4         | 0.786     | 1,660          | 12,369     | 0.188          | 1,707          | -              |
| 5         | 0.787     | 1,530          | 11,373     | 0.184          | 1,592          | -              |
| AVERAGE   | 0.79      | 1501           | 11327      | 0.18           | 1667           | -              |
| ST DEV    | 0.00      | 103            | 610        | 0.01           | 66             | -              |
| COV       | 0%        | 7%             | 5%         | 5%             | 4%             | -              |
|           |           |                |            |                |                |                |

-Not achieved.

CONTROL CLASSIC ESPRESSO MOR: 11327 psi El: 1667 psi

#### UV Exposed MOR and EI Flexural Strength Values for dassoXTR Classic Espresso

|           | Max Load (lbs)                                                        | Max Stress                                                                                                                       | Max Deflection                                                                                                                                                                           | Stiffness (EI)                                                                                                                                                                                                                       | 3% Strain Load                                                                                                                                                                                                                              |
|-----------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thickness |                                                                       | (psi)                                                                                                                            | (in.)                                                                                                                                                                                    | (psi)                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |
| 0.776     | 1,974                                                                 | 15,679                                                                                                                           | 0.218                                                                                                                                                                                    | 1,817                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                           |
| 0.781     | 1,858                                                                 | 14,510                                                                                                                           | 0.203                                                                                                                                                                                    | 1,973                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                           |
| 0.780     | 2,007                                                                 | 15,734                                                                                                                           | 0.216                                                                                                                                                                                    | 1,857                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                           |
| 0.783     | 1,688                                                                 | 13,072                                                                                                                           | 0.205                                                                                                                                                                                    | 1,650                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                           |
| 0.775     | 1,689                                                                 | 13,444                                                                                                                           | 0.195                                                                                                                                                                                    | 1,906                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                           |
| 0.78      | 1843                                                                  | 14488                                                                                                                            | 0.21                                                                                                                                                                                     | 1841                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                           |
| 0.00      | 152                                                                   | 1232                                                                                                                             | 0.01                                                                                                                                                                                     | 121                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                           |
| 0%        | 8%                                                                    | 9%                                                                                                                               | 5%                                                                                                                                                                                       | 7%                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                           |
|           | Thickness   0.776   0.781   0.780   0.783   0.775   0.778   0.00   0% | Max Load (ibs)   Thickness   0.776 1,974   0.781 1,858   0.780 2,007   0.783 1,688   0.775 1,689   0.778 1843   0.00 152   0% 8% | Max Load (ibs) Max Sitess<br>(psi)   D.776 1,974 15,679   0.781 1,858 14,510   0.780 2,007 15,734   0.783 1,688 13,072   0.775 1,689 13,444   0.78 1843 14488   0.00 152 1232   0% 8% 9% | Thickness Max Stress Max Deflection   0.776 1,974 15,679 0.218   0.781 1,858 14,510 0.203   0.780 2,007 15,734 0.216   0.783 1,688 13,072 0.205   0.775 1,689 13,444 0.195   0.78 1843 14488 0.21   0.00 152 1232 0.01   0% 8% 9% 5% | ThicknessMax StressMax StressMax DeficitionStimless (EI)0.7761,97415,6790.2181,8170.7811,85814,5100.2031,9730.7802,00715,7340.2161,8570.7831,68813,0720.2051,6500.7751,68913,4440.1951,9060.781843144880.2118410.0015212320.011210%8%9%5%7% |

-Not achieved.

UV EXPOSED CLASSIC ESPRESSO

MOR: 14488 psi CHANGE: 0%

EI: 1841 psi CHANGE: 0%



| Control Samples MOR and EI Flexural Strength Values for dassoXTR Epic Cognac |           |                |                     |                         |                         |                |  |  |  |  |  |  |
|------------------------------------------------------------------------------|-----------|----------------|---------------------|-------------------------|-------------------------|----------------|--|--|--|--|--|--|
| Sample ID                                                                    | Thickness | Max Load (lbs) | Max Stress<br>(psi) | Max Deflection<br>(in.) | Stiffness (EI)<br>(psi) | 3% Strain Load |  |  |  |  |  |  |
| 1                                                                            | 0.789     | 1,570          | 12,080              | 0.164                   | 1,746                   | -              |  |  |  |  |  |  |
| 2                                                                            | 0.788     | 1,871          | 14,524              | 0.200                   | 1,829                   | -              |  |  |  |  |  |  |
| 3                                                                            | 0.785     | 1,889          | 14,686              | 0.202                   | 1,804                   | -              |  |  |  |  |  |  |
| 4                                                                            | 0.789     | 1,634          | 12,575              | 0.176                   | 1,741                   | -              |  |  |  |  |  |  |
| 5                                                                            | 0.788     | 2,478          | 19,115              | 0.275                   | 1,836                   | -              |  |  |  |  |  |  |
| AVERAGE                                                                      | 0.79      | 1888           | 14596               | 0.20                    | 1791                    | -              |  |  |  |  |  |  |
| ST DEV                                                                       | 0.0       | 358            | 2777                | 0.04                    | 45.2                    | -              |  |  |  |  |  |  |
| COV                                                                          | 0         | 19             | 19                  | 21                      | 3                       | -              |  |  |  |  |  |  |

-Not achieved.

# CONTROL EPIC COGNAC MOR: 14596 psi

El: 1791 psi

UV Exposed MOR and EI Flexural Strength Values for dassoXTR Epic Cognac

|           |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness |                | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.781     | 1,822          | 14,307     | 0.241          | 1,902          | -              |
| 2         | 0.783     | 2,033          | 15,887     | 0.207          | 1,946          | -              |
| 3         | 0.792     | 1,842          | 13,903     | 0.220          | 1,726          | -              |
| 4         | 0.783     | 2,001          | 15,634     | 0.199          | 1,869          | -              |
| 5         | 0.781     | 1,875          | 14,729     | 0.215          | 1,813          | -              |
| AVERAGE   | 0.78      | 1915           | 14892      | 0.22           | 1851           | -              |
| ST DEV    | 0.0       | 96             | 850        | 0.02           | 85.2           | -              |
| COV       | 1         | 5              | 6          | 7              | 5              | -              |

UV EXPOSED EPIC COGNAC MOR: 14892 psi CHANGE: 0% EI: 1851 psi CHANGE: 0%



## 2.2 FREEZE-THAW RESISTANCE

5 test samples of dassoXTR Classic Espresso and Epic Cognac were removed from standard conditioning and exposed to freeze-thaw resistance. SampesI were submerged underwater for a period of 24 hours, following which the specimens were placed in a freezer maintained at  $-20^{\circ}F \pm 4^{\circ}F$  for 24 hours. Following, specimens were placed in room temperature for 24 hours.

This process was followed for a total of 3 cycles. Following exposure, the samples were tested at 24 inch span following ASTM D6109.

## **Test Requirements:**

Compare Freeze-Thaw Values to Control Flexural Strength (MOR) and Flexural Stiffness (EI).

## Test Results:

| Sample ID | Thickness | Max Load (Ibs) | Max Stress<br>(psi) | Max Deflection<br>(in.) | Stiffness (EI)<br>(psi) | 3% Strain Load |
|-----------|-----------|----------------|---------------------|-------------------------|-------------------------|----------------|
| 1         | 0.801     | 1,549          | 10756               | 0.767                   | 2,770                   | -              |
| 2         | 0.801     | 1,532          | 10638               | 0.767                   | 2,699                   | -              |
| 3         | 0.799     | 1,173          | 8145                | 0.597                   | 2,664                   | -              |
| 4         | 0.799     | 1,629          | 11312               | 0.854                   | 2,623                   | -              |
| 5         | 0.800     | 1,622          | 11263               | 0.890                   | 2,514                   | -              |
| AVERAGE   | 0.80      | 1501           | 10423               | 0.775                   | 2,654                   | -              |
| ST DEV    | 0.0       | 188            | 1308                | 0.1                     | 95.1                    | -              |
| COV       | 0         | 13             | 13                  | 15                      | 4                       | -              |

Freeze-Thaw MOR and EI Flexural Strength Values for dassoXTR Classic Espresso

## FREEZE-THAW CLASSIC ESPRESSO MOR: 10423 psi CHANGE: 0%

El: 2654 psi CHANGE: 0%

Freeze-Thaw MOR and EI Flexural Strength Values for dassoXTR Epic Cognac

|           |           | Max Load (lbs) | Max Stress | Max Deflection | Stiffness (EI) | 3% Strain Load |
|-----------|-----------|----------------|------------|----------------|----------------|----------------|
| Sample ID | Thickness |                | (psi)      | (in.)          | (psi)          |                |
| 1         | 0.800     | 1,731          | 12038      | 1.011          | 2,440          | -              |
| 2         | 0.799     | 2,037          | 14166      | 1.316          | 2,366          | -              |
| 3         | 0.799     | 2,090          | 14534      | 1.393          | 2,343          | -              |
| 4         | 0.798     | 2,054          | 14284      | 1.291          | 2,417          | -              |
| 5         | 0.801     | 1,899          | 13206      | 1.262          | 2,220          | -              |
| AVERAGE   | 0.80      | 1962           | 13645      | 1.255          | 2,357          | -              |
| ST DEV    | 0.0       | 148            | 1030       | 0.1            | 85.9           | -              |
| COV       | 0         | 8              | 8          | 12             | 4              | -              |

FREEZE-THAW EPIC COGNAC MOR: 13645 psi CHANGE: -6%EI: 2357 psi CHANGE: -7%MOR % Change < 10%, EI % Change < 10% no end use adjustment factor required.</td>



## 3.0 BIODETERIORATION TESTING

**Test Procedure:** Testing was conducted in accordance with Section 4.8 of ASTM D7032 for fungal and termite resistance.

## 3.1 FUNGAL DECAY RESISTANCE

dassoXTR Classic Espresso and Epic Cognac were evaluated for fungal decay resistance following method AWPA Standard E10 by Louisiana Forest Products Development Center (International Accreditation Services, Inc. TL-350).

#### **Test Requirements**

Test samples are to show decay resistance to equivalent to that of preservative-treated or the heartwood of naturally durable wood used in identical applications, as measured by visual inspection and average weight loss

#### Test Results

Findings by Louisiana Forest Products Development Center found dassoXTR Classic Espresso and Epic Cognac products exhibited good resistance of the decay fungi compared with the untreated pine and sweetgum controls and comply with ICC-ES AC174.

See Louisiana Forest Products Development Center test report WDL-2020-12b dated 4/16/2021 found in Appendix A.

#### 3.2 TERMITE RESISTANCE

dassoXTR Classic Espresso and Epic Cognac were evaluated for termite resistance following method ASTM D3345-17 by Louisiana Forest Products Development Center (International Accreditation Services, Inc. TL-350).

#### Test Requirements

Visual inspection of the test specimens shall demonstrate resistance to termite attack equivalent to that of preservative treated or the heartwood of naturally durable wood used in identical applications.

#### Test Results

Findings by Louisiana Forest Products Development Center found dassoXTR Classic Espresso and Epic Cognac products exhibited strong resistance to termite attack with the termites exhibiting light attack on the machined surfaces of the test samples and comply with ICC-ES AC174.

See Louisiana Forest Products Development Center test report WDL-2020-12a dated 14/1/2021 found in Appendix B.

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.



## 4.0 SURFACE BURNING CHARACTERISTICS

dassoXTR Classic Espresso and Epic Cognac products of 2" thickness were evaluated to ASTM E84-18 to determine surface burning characteristics. Testing was conducted on the noted 2" product thickness option, as this was considered of higher fuel load with results to apply to the thinner 1" product thickness options of dassoXTR.

#### Test Requirements

Products evaluated are to have a flame spread index of < 200 evaluated to ASTM E84.

#### **Test Results**

dassoXTR Classic Espresso and Epic Cognac products surface burning characteristics are outlined below.

| PRODUCT          | FLAME SPREAD INDEX | SMOKE DEVELOPED INDEX |
|------------------|--------------------|-----------------------|
| Classic Espresso | 25                 | 25                    |
| Epic Cognac      | 25                 | 10                    |

For further details, see QAI test report RJ7637F-1brev1 revised 05/11/2022 (Classic Espresso) and RJ7637F-1arev1 revised 05/11/2022 (Epic Cognac) found in Appendix C and D of this report.

dassoXTR Classic Espresso and Epic Cognac when evaluated to ASTM E84-18b were found to have a flame spread < 200.

## 5.0 DURATION OF LOAD

dassoXTR Classic Espresso and Epic Cognac of 1 inches thickness were evaluated to ASTM D7021 Section 5.10.2 for duration of load, with 15 samples tested.

Specimens were loaded to two times the expected span load, increased by the applicable adjustment factors determined in Sections 1 and 2 of this report, determined based on the target of 100 psf design load at 24 inch span. The intended load for application was calculated based on simply supported beam theory, by determining the appropriate center point load for producing equivalent stress in a simply supported beam of the same geometric properties (ie, shape of the profile) as follows:

Required pressure resistance = 2 x 100 psf x worst case between strength and stiffness adjustment.

Classic Expresso =  $2 \times 100 \text{ psf} * (1 + (1-0.927) = 215 \text{ psf})$ Epic Cognac =  $2 \times 100 \text{ psf} * (1 + (1-0.857) = 229 \text{ psf})$ 

Based on the above 230 pounds was applied as center point load to the dassoXTR deck board samples for duration of load.

## Test Requirements

No failures, and no evidence of tertiary creep.

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.



# **Test Results**

0.000

10

#### dassoXTR Classic Espresso Duration of Load Test Summary

| Specimer | Net Deflection<br>After 1 Hour (in) | Net<br>Deflection<br>After 2<br>Hours (in) | Net Deflection<br>After 3 Hours<br>(in) | Net Deflection<br>After 4 Hours<br>(in) | Net Deflection<br>After 5 Hours<br>(in) | Net Deflection<br>After 6 Hours<br>(in) | Net Deflection<br>After 7 Hours<br>(in) | Net Deflection<br>After 8 Hours<br>(in) | Net Deflection<br>After 16 Hours<br>(in) | Net Deflection<br>After 24 Hours<br>(in) | Net Deflection<br>After 2 days (in) | Net Deflection<br>After 3 days<br>(in) | Net Deflection<br>After 4 days (in | Net Deflection<br>) After 5 days (in) | Net Deflection<br>After 6 days (in) | Net Deflection<br>After 7 days<br>(in) | Net Deflection<br>After 2 weeks<br>(in) | Net Deflection<br>After 3 weeks<br>(in) | Net Deflection<br>After 4 weeks<br>(in) | Net Deflection<br>After 5 weeks<br>(in) | Net Deflection<br>After 6 weeks<br>(in) | Net Deflection<br>After 7 weeks<br>(in) | Net Deflection<br>After 8 weeks<br>(in) | Net Deflection<br>After 9 weeks<br>(in) | Net Deflection<br>After 10 weeks<br>(in) | Net Deflection<br>After 11 weeks (in | Net Deflection<br>After 12 weeks<br>(in) | Net Deflection<br>After 90 days (in) |
|----------|-------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------|------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|
| 110.     | 0.041666667                         | 0.08333333                                 | 0.125                                   | 0.166666667                             | 0.208333333                             | 0.25                                    | 0.142857143                             | 0.333333333                             | 0.666666667                              | 1                                        | 2                                   | 3                                      | 4                                  | 5                                     | 6                                   | 7                                      | 14                                      | 21                                      | 28                                      | 35                                      | 42                                      | 49                                      | 56                                      | 63                                      | 70                                       | Π                                    | 84                                       | 90                                   |
| 1        | 0.070                               | 0.070                                      | 0.080                                   | 0.080                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                    | 0.100                                    | 0.100                               | 0.100                                  | 0.100                              | 0.100                                 | 0.100                               | 0.100                                  | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                | 0.100                                    | 0.100                                |
| 2        | 0.070                               | 0.070                                      | 0.080                                   | 0.080                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                    | 0.100                                    | 0.100                               | 0.100                                  | 0.100                              | 0.100                                 | 0.100                               | 0.100                                  | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                | 0.100                                    | 0.100                                |
| 3        | 0.080                               | 0.080                                      | 0.090                                   | 0.090                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.110                                    | 0.110                               | 0.110                                  | 0.110                              | 0.110                                 | 0.110                               | 0.110                                  | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                    | 0.110                                | 0.110                                    | 0.110                                |
| 4        | 0.100                               | 0.100                                      | 0.110                                   | 0.110                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                    | 0.130                                    | 0.130                               | 0.130                                  | 0.130                              | 0.130                                 | 0.130                               | 0.130                                  | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                    | 0.130                                | 0.130                                    | 0.130                                |
| 5        | 0.070                               | 0.070                                      | 0.080                                   | 0.080                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                    | 0.100                                    | 0.100                               | 0.100                                  | 0.100                              | 0.100                                 | 0.100                               | 0.100                                  | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                | 0.100                                    | 0.100                                |
| 6        | 0.060                               | 0.060                                      | 0.070                                   | 0.070                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                    | 0.090                                    | 0.090                               | 0.090                                  | 0.090                              | 0.090                                 | 0.090                               | 0.090                                  | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                    | 0.090                                | 0.090                                    | 0.090                                |
| 7        | 0.060                               | 0.060                                      | 0.070                                   | 0.070                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                    | 0.090                                    | 0.090                               | 0.090                                  | 0.090                              | 0.090                                 | 0.090                               | 0.090                                  | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                    | 0.090                                | 0.090                                    | 0.090                                |
| 8        | 0.110                               | 0.110                                      | 0.120                                   | 0.120                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                    | 0.130                                    | 0.130                               | 0.130                                  | 0.130                              | 0.130                                 | 0.130                               | 0.130                                  | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                    | 0.130                                | 0.130                                    | 0.130                                |
| 9        | 0.130                               | 0.130                                      | 0.140                                   | 0.140                                   | 0.150                                   | 0.150                                   | 0.150                                   | 0.150                                   | 0.150                                    | 0.160                                    | 0.160                               | 0.160                                  | 0.160                              | 0.160                                 | 0.160                               | 0.160                                  | 0.160                                   | 0.160                                   | 0.160                                   | 0.160                                   | 0.160                                   | 0.160                                   | 0.160                                   | 0.160                                   | 0.160                                    | 0.160                                | 0.160                                    | 0.160                                |
| 10       | 0.070                               | 0.070                                      | 0.080                                   | 0.080                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                    | 0.100                                    | 0.100                               | 0.100                                  | 0.100                              | 0.100                                 | 0.100                               | 0.100                                  | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                | 0.100                                    | 0.100                                |
| 11       | 0.050                               | 0.050                                      | 0.060                                   | 0.060                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                    | 0.080                                    | 0.080                               | 0.080                                  | 0.080                              | 0.080                                 | 0.080                               | 0.080                                  | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                    | 0.080                                | 0.080                                    | 0.080                                |
| 12       | 0.050                               | 0.050                                      | 0.060                                   | 0.060                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                    | 0.080                                    | 0.080                               | 0.080                                  | 0.080                              | 0.080                                 | 0.080                               | 0.080                                  | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                    | 0.080                                | 0.080                                    | 0.080                                |
| 13       | 0.040                               | 0.040                                      | 0.050                                   | 0.050                                   | 0.060                                   | 0.060                                   | 0.060                                   | 0.060                                   | 0.060                                    | 0.070                                    | 0.070                               | 0.070                                  | 0.070                              | 0.070                                 | 0.070                               | 0.070                                  | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                    | 0.070                                | 0.070                                    | 0.070                                |
| 14       | 0.020                               | 0.020                                      | 0.030                                   | 0.030                                   | 0.040                                   | 0.040                                   | 0.040                                   | 0.040                                   | 0.040                                    | 0.050                                    | 0.050                               | 0.050                                  | 0.050                              | 0.050                                 | 0.050                               | 0.050                                  | 0.050                                   | 0.050                                   | 0.050                                   | 0.050                                   | 0.050                                   | 0.050                                   | 0.050                                   | 0.050                                   | 0.050                                    | 0.050                                | 0.050                                    | 0.050                                |
| 15       | 0.050                               | 0.050                                      | 0.060                                   | 0.060                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                    | 0.080                                    | 0.080                               | 0.080                                  | 0.080                              | 0.080                                 | 0.080                               | 0.080                                  | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                    | 0.080                                | 0.080                                    | 0.080                                |
| 0.180    |                                     |                                            |                                         |                                         |                                         | Classic                                 | c Espres                                | so Dura                                 | tion of                                  | Load                                     |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
|          |                                     |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
| 0.160    | ]                                   |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     | 1                                      |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
| 0.140    |                                     |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
| 0.120    | 1                                   |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
|          |                                     |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     | -                                      |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
| 0.100    | 1                                   |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
| 0.080    |                                     |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     | -                                      |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
| 0.060    | /                                   |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
|          |                                     |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
| 0.040    | ľ                                   |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |
| 0.020    |                                     |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                     |                                        |                                    |                                       |                                     |                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                      |                                          |                                      |

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.

14 \_\_\_\_\_15

80

70

13

60



#### Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 16 of 84

| uassovirk Epic Cognac Duration of Load Test Summary | dassoXTR | Epic Cognac | Duration of | Load Test | Summary |
|-----------------------------------------------------|----------|-------------|-------------|-----------|---------|
|-----------------------------------------------------|----------|-------------|-------------|-----------|---------|

**-**1 **-**2 **-**3 **-**4 **-**5 **-**6 **-**7 **-**8 **-**9 **-**10 **-**11 **-**12 **-**13 **-**14 **-**15

| Specimen | Net Deflection<br>After 1 Hour<br>(in) | Net<br>Deflection<br>After 2<br>Hours (in) | Net Deflection<br>After 3 Hours<br>(in) | Net Deflection<br>After 4 Hours<br>(in) | Net Deflection<br>After 5 Hours<br>(in) | Net Deflection<br>After 6 Hours<br>(in) | Net Deflection<br>After 7 Hours<br>(in) | Net Deflection<br>After 8 Hours<br>(in) | Net Deflection<br>After 16 Hours<br>(in) | Net Deflection<br>After 24 Hours<br>(in) | Net Deflection<br>After 2 days<br>(in) | Net Deflection<br>After 3 days<br>(in) | Net Deflection<br>After 4 days<br>(in) | Net Deflection<br>After 5 days<br>(in) | Net Deflection<br>After 6 days<br>(in) | Net Deflectior<br>After 7 days<br>(in) | n Net Deflectio<br>After 2 week<br>(in) | on Net Deflection<br>is After 3 weeks<br>(in) | Net Deflection<br>After 4 weeks<br>(in) | Net Deflection<br>After 5 weeks<br>(in) | Net Deflection<br>After 6 weeks<br>(in) | Net Deflection<br>After 7 weeks<br>(in) | Net Deflection<br>After 8 weeks<br>(in) | Net Deflection<br>After 9 weeks<br>(in) | Net Deflection<br>After 10 weeks<br>(in) | Net Deflection<br>After 11 weeks<br>(in) | Net Deflection<br>After 12 weeks<br>(in) | Net Deflection<br>After 90 days<br>(in) |
|----------|----------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|
| No.      | 0.041666667                            | 0.08333333                                 | 0.125                                   | 0.1666666667                            | 0.208333333                             | 0.25                                    | 0.142857143                             | 0.333333333                             | 0.666666667                              | 1                                        | 2                                      | 3                                      | 4                                      | 5                                      | 6                                      | 7                                      | 14                                      | 21                                            | 28                                      | 35                                      | 42                                      | 49                                      | 56                                      | 63                                      | 70                                       | 77                                       | 84                                       | 90                                      |
| 1        | 0.080                                  | 0.090                                      | 0.090                                   | 0.090                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.110                                    | 0.120                                    | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                   | 0.120                                         | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                    | 0.120                                    | 0.120                                    | 0.120                                   |
| 2        | 0.070                                  | 0.070                                      | 0.070                                   | 0.070                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.090                                    | 0.110                                    | 0.110                                  | 0.110                                  | 0.110                                  | 0.110                                  | 0.110                                  | 0.110                                  | 0.110                                   | 0.110                                         | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                    | 0.110                                    | 0.110                                    | 0.110                                   |
| 3        | 0.060                                  | 0.070                                      | 0.070                                   | 0.070                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.080                                   | 0.090                                    | 0.100                                    | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                   | 0.100                                         | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                    | 0.100                                    | 0.100                                   |
| 4        | 0.060                                  | 0.060                                      | 0.060                                   | 0.060                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.070                                   | 0.080                                    | 0.090                                    | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                   | 0.100                                         | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                    | 0.100                                    | 0.100                                   |
| 5        | 0.080                                  | 0.080                                      | 0.090                                   | 0.090                                   | 0.090                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                    | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                   | 0.100                                         | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                    | 0.100                                    | 0.100                                   |
| 6        | 0.070                                  | 0.070                                      | 0.080                                   | 0.080                                   | 0.080                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.100                                    | 0.100                                    | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                  | 0.100                                   | 0.100                                         | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                    | 0.100                                    | 0.100                                    | 0.100                                   |
| 7        | 0.070                                  | 0.080                                      | 0.080                                   | 0.080                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.090                                   | 0.100                                    | 0.100                                    | 0.110                                  | 0.110                                  | 0.110                                  | 0.110                                  | 0.110                                  | 0.110                                  | 0.110                                   | 0.110                                         | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                    | 0.110                                    | 0.110                                    | 0.110                                   |
| 8        | 0.090                                  | 0.100                                      | 0.100                                   | 0.100                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.120                                    | 0.120                                    | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                   | 0.130                                         | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                    | 0.130                                    | 0.130                                    | 0.130                                   |
| 9        | 0.090                                  | 0.100                                      | 0.100                                   | 0.100                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.120                                    | 0.120                                    | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                   | 0.130                                         | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                    | 0.130                                    | 0.130                                    | 0.130                                   |
| 10       | 0.090                                  | 0.090                                      | 0.100                                   | 0.100                                   | 0.100                                   | 0.110                                   | 0.110                                   | 0.110                                   | 0.120                                    | 0.120                                    | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                  | 0.130                                   | 0.130                                         | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                    | 0.130                                    | 0.130                                    | 0.130                                   |
| 11       | 0.120                                  | 0.120                                      | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.130                                   | 0.140                                    | 0.150                                    | 0.150                                  | 0.150                                  | 0.150                                  | 0.150                                  | 0.150                                  | 0.150                                  | 0.150                                   | 0.150                                         | 0.150                                   | 0.150                                   | 0.150                                   | 0.150                                   | 0.150                                   | 0.150                                   | 0.150                                    | 0.150                                    | 0.150                                    | 0.150                                   |
| 12       | 0.080                                  | 0.090                                      | 0.090                                   | 0.090                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.110                                    | 0.120                                    | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                   | 0.120                                         | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                    | 0.120                                    | 0.120                                    | 0.120                                   |
| 13       | 0.100                                  | 0.100                                      | 0.110                                   | 0.110                                   | 0.110                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.130                                    | 0.140                                    | 0.140                                  | 0.140                                  | 0.140                                  | 0.140                                  | 0.140                                  | 0.140                                  | 0.140                                   | 0.140                                         | 0.140                                   | 0.140                                   | 0.140                                   | 0.140                                   | 0.140                                   | 0.140                                   | 0.140                                    | 0.140                                    | 0.140                                    | 0.140                                   |
| 14       | 0.080                                  | 0.080                                      | 0.090                                   | 0.090                                   | 0.090                                   | 0.100                                   | 0.100                                   | 0.100                                   | 0.110                                    | 0.120                                    | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                  | 0.120                                   | 0.120                                         | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                   | 0.120                                    | 0.120                                    | 0.120                                    | 0.120                                   |
| 15       | 0.130                                  | 0.130                                      | 0.140                                   | 0.140                                   | 0.140                                   | 0.150                                   | 0.150                                   | 0.150                                   | 0.160                                    | 0.170                                    | 0.170                                  | 0.170                                  | 0.170                                  | 0.170                                  | 0.170                                  | 0.170                                  | 0.170                                   | 0.170                                         | 0.170                                   | 0.170                                   | 0.170                                   | 0.170                                   | 0.170                                   | 0.170                                   | 0.170                                    | 0.170                                    | 0.170                                    | 0.170                                   |
| 0.180    |                                        |                                            |                                         |                                         |                                         | E                                       | pic Cog                                 | nac Du                                  | ration c                                 | of Load                                  |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
|          |                                        |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.160    |                                        |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.140    | I                                      |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        | -                                       |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.120    |                                        |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
|          | 17-                                    |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        | -                                       |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.100    | 1                                      |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.080    | /                                      |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.060    |                                        |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
|          |                                        |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.040    |                                        |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.020    |                                        |                                            |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |
| 0.000    | 0                                      |                                            | 10                                      | 20                                      | ,                                       | 30                                      |                                         | 40                                      | 5                                        | 0                                        | 60                                     |                                        | 70                                     |                                        | 80                                     | 9                                      |                                         |                                               |                                         |                                         |                                         |                                         |                                         |                                         |                                          |                                          |                                          |                                         |

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.



dassoXTR Classic Espresso was found to have no tertiary creep and no failures were found during duration of load evaluation to ASTM D7031.

dassoXTR Epic Cognac was found to have no tertiary creep and no failures were found during duration of load evaluation to ASTM D7031.

## 6.0 DECKBOARD PERFORMANCE RATINGS

Deck board performance ratings were determined for dassoXTR Classic Espresso and Epic Cognac products to determine unadjusted allowable load including use as stair tread, and mechanical holding capacity.

As dassoXTR Classic Espresso 1" and 2" thickness profiles are of the same product formulation, evaluation for allowable load including use as stair treat and duration of load was conducted on 1 inches thickness Classic Espresso products of weaker geometrical properties, with results considered to apply to 2" thickness Classic Espresso products.

As Classic Espresso 1 inch thickness products and Classic Espresso 2-inch thickness products are of different installations using proprietary fasteners provided by Dasso USA, each product was evaluated for mechanical holding capacity following ASTM E330, with a factor of safety of 3 applied.

As dassoXTR Epic Cognac 1" and 2" thickness profiles are of the same product formulation, evaluation for allowable load including use as stair treat and duration of load was conducted on 1 inches thickness Epic Cognac products of weaker geometrical properties, with results considered to apply to 2" thickness Epic Cognac products.

As Epic Cognac 1 inch thickness products and Epic Cognac 2-inch thickness products are of different installations using proprietary fasteners provided by Dasso USA, each product was evaluated for mechanical holding capacity following ASTM E330, with a factor of safety of 3 applied.



# 6.1 Adjusted Allowable Load Determination Deckboards

28 samples each of dassoXTR Classic Espresso and Epic Cognac products were cut to 26" length and placed at standard conditioning.

Following, the samples were tested following ASTM D6109 at 24" span, and ultimate load, MOR, EI, and load at 1/180 span recorded.

From the determined loads noted above, the equivalent applied pressure (psf) was determined following general engineering principles for stress determination in simply supported beams, converting the stress induced through third point loading to equivalent pressure (psf) based on the formulas:

Stress<sub>THIRD POINT</sub> = Stress<sub>UNIFORM</sub>

Stress =  $M^*y/I$ 

Where

M = Maximum moment due to loading type (lbs\*ft). y = distance perpendicular from neutral axis to outer edge (ft). I = moment of inertia of section about the neutral axis (ft<sup>4</sup>).

Following

 $Stress_{THIRD POINT} = Stress_{\omega}$ 

Where Maximum Moment Third Point Bending Stress = PL / 6 Where P = Max Test Load (lbs) L = Test Span (ft = )

> Maximum Uniform Load =  $\omega L^2 / 8$ Where  $\omega$  = Uniform Load (lbs /ft)

Thus:  $((PL/6) * y) / I = ((\omega L^2/8) * y) / I$ 

Solving for  $\omega = (P^*8) / (L^* 6) = lbs/ft$ 

Converting to psf = ( $\omega$  \* 12 inches / 1 ft) / Width (ft) = Allowable Pressure (psf)

## Test Requirements

Unadjusted Allowable Load Based is Lesser between Flexural Strength / 2.5 and Load @ 1/180 Deflection Adjusted Allowable Load = Unadjusted Allowable Load x Factors from Sections 1 and 2 of this report outlined below.

| PRODUCT          | STRENGTH ADJUSTMENT | STIFFNESS ADJUSTMENT |
|------------------|---------------------|----------------------|
| Classic Espresso | 0.927               | 0,927                |
| Epic Cognac      | 0.857               | 0.883                |

Adjusted Allowable Load > 100 psf @ 24 inches Span Deckboard

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.

# Test Results:

# **Classic Espresso Deckboard Flexural Performance Results**

| SAMPLE  | THICKNESS | ULT. LOAD | MOR   | LOAD 1/180 | LOAD 3%                  |        |
|---------|-----------|-----------|-------|------------|--------------------------|--------|
|         | (inches)  | (lbs)     | (psi) | (lbs)      | (EI) Ibs*in <sup>2</sup> | STRAIN |
| 1       | 0.801     | 1303      | 11311 | 192        | 2,375                    | -      |
| 2       | 0.800     | 1605      | 13932 | 168        | 2,423                    | -      |
| 3       | 0.799     | 1206      | 10469 | 199        | 2,377                    | -      |
| 4       | 0.800     | 1463      | 12700 | 214        | 2,640                    | -      |
| 5       | 0.800     | 1745      | 15148 | 224        | 2,775                    | -      |
| 6       | 0.798     | 1314      | 11406 | 191        | 2,395                    | -      |
| 7       | 0.799     | 1501      | 13030 | 206        | 2,500                    | -      |
| 8       | 0.800     | 1374      | 11927 | 187        | 2,253                    | -      |
| 9       | 0.802     | 1375      | 11936 | 183        | 2,328                    | -      |
| 10      | 0.799     | 1300      | 11285 | 194        | 2,394                    | -      |
| 11      | 0.798     | 1318      | 11441 | 173        | 2,163                    | -      |
| 12      | 0.799     | 1222      | 10608 | 203        | 2,361                    | -      |
| 13      | 0.801     | 1264      | 10972 | 189        | 2,432                    | -      |
| 14      | 0.800     | 1464      | 12708 | 202        | 2,615                    | -      |
| 15      | 0.799     | 1665      | 14453 | 214        | 2,637                    | -      |
| 16      | 0.798     | 1637      | 14210 | 197        | 2,500                    | -      |
| 17      | 0.799     | 1571      | 13637 | 216        | 2,628                    | -      |
| 18      | 0.800     | 1502      | 13038 | 206        | 2,478                    | -      |
| 19      | 0.800     | 1601      | 13898 | 206        | 2,588                    | -      |
| 20      | 0.800     | 1442      | 12517 | 219        | 2,517                    | -      |
| 21      | 0.798     | 1528      | 13264 | 232        | 2,682                    | -      |
| 22      | 0.798     | 1596      | 13854 | 166        | 2,414                    | -      |
| 23      | 0.799     | 1683      | 14609 | 164        | 2,470                    | -      |
| 24      | 0.799     | 1407      | 12214 | 189        | 2,554                    | -      |
| 25      | 0.800     | 1800      | 15625 | 218        | 2,623                    | -      |
| 26      | 0.801     | 1707      | 14818 | 226        | 2,750                    | -      |
| 27      | 0.802     | 1615      | 14019 | 242        | 2,593                    | -      |
| 28      | 0.800     | 1501      | 13030 | 205        | 2,478                    | -      |
| AVERAGE | 0.80      | 1490      | 12931 | 201        | 2498                     |        |
| ST DEV  | 0.00      | 165       | 1428  | 20         | 145                      |        |
| COV     | 0.14      | 11        | 11    | 10         | 6                        |        |

Unadjusted MOR: 596 lbs Unadjusted Load @ 1/180: 201 lbs Adjusted MOR based on Strength Reductions: 552 lbs Adjusted Load @ 1/180 based on Stiffness Reductions: 186 lbs

(186 lbs third point x 8) / (2 ft Span x 6) = 124 lbs/ft =  $\omega$ 124 lbs/ft / Width (5.4 inches / 12 inches/ ft) = 276 psf allowable load.

186 lbs third point loading = 276 psf pressure for equivalent stress > 100 psf target at 24" on center spacing.



## Epic Cognac Deckboard Flexural Performance Results

| SAMPLE  | THICKNESS | ULT. LOAD | MOR<br>(psi)   | LOAD 1/180   | STIFFNESS | LOAD 3% |
|---------|-----------|-----------|----------------|--------------|-----------|---------|
| 1       |           | 1 875     | (psi)<br>16276 | (IDS)<br>149 | 2 567     |         |
| 2       | 0.798     | 1,075     | 13845          | 133          | 2,300     | _       |
| 3       | 0.799     | 1,000     | 15252          | 121          | 2,000     | _       |
| 4       | 0.802     | 1 974     | 17135          | 185          | 2,100     | _       |
| 5       | 0.800     | 1,657     | 14384          | 159          | 2,020     | _       |
| 6       | 0.798     | 1 433     | 12439          | 139          | 2,000     | _       |
| 7       | 0.801     | 1 727     | 14991          | 163          | 2,000     | -       |
| 8       | 0.800     | 1,808     | 15694          | 100          | 2,101     | _       |
| 9       | 0 799     | 1 787     | 15512          | 206          | 2,587     | _       |
| 10      | 0.798     | 1 817     | 15773          | 189          | 2 747     | _       |
| 11      | 0.800     | 2,097     | 18203          | 192          | 2,659     | -       |
| 12      | 0.801     | 2,088     | 18125          | 182          | 2,321     | -       |
| 13      | 0.802     | 2.079     | 18047          | 195          | 2.445     | -       |
| 14      | 0.802     | 2.050     | 17795          | 190          | 2.511     | -       |
| 15      | 0.800     | 2.285     | 19835          | 190          | 2.358     | -       |
| 16      | 0.799     | 1.743     | 15130          | 184          | 2.260     | -       |
| 17      | 0.798     | 2.147     | 18637          | 209          | 2.394     | -       |
| 18      | 0.798     | 2,088     | 18125          | 192          | 2,215     | -       |
| 19      | 0.800     | 1,821     | 15807          | 209          | 2,306     | -       |
| 20      | 0.798     | 2,255     | 19575          | 196          | 2,452     | -       |
| 21      | 0.800     | 1,788     | 15521          | 179          | 2,308     | -       |
| 22      | 0.799     | 2,007     | 17422          | 198          | 2,454     | -       |
| 23      | 0.801     | 2,171     | 18845          | 203          | 2,404     | -       |
| 24      | 0.800     | 2,196     | 19063          | 224          | 2,522     | -       |
| 25      | 0.798     | 1,960     | 17014          | 195          | 2,438     | -       |
| 26      | 0.798     | 1,768     | 15347          | 206          | 2,313     | -       |
| 27      | 0.802     | 1,881     | 16328          | 179          | 2,206     | -       |
| 28      | 0.800     | 1,879     | 16311          | 140          | 2,415     | -       |
| AVERAGE | 0.80      | 1919      | 16658          | 182          | 2386      |         |
| ST DEV  | 0.00      | 209       | 1816           | 26           | 163       |         |
| COV     | 0.18      | 11        | 11             | 14           | 7         |         |

Unadjusted MOR: 768 lbs Unadjusted Load @ 1/180: 182 lbs Adjusted MOR based on Strength Reductions: 658 lbs Adjusted Load @ 1/180 based on Stiffness Reductions: 161 lbs

(161 lbs third point x 8) / (2 ft Span x 6) = 107 lbs/ft =  $\omega$ 107 lbs/ft / Width (5.4 inches / 12 inches/ ft) = 238 psf allowable load.

161 lbs third point loading = 238 psf pressure for equivalent stress > 100 psf target at 24" on center spacing.



## 6.2 Adjusted Allowable Load Determination Stair Treads

28 samples each of dassoXTR Classic Espresso and Epic Cognac 1" products were cut to 17" length and placed at standard conditioning.

Following, the samples were supported at 16 inches span, and a concentrated load applied at the edge of the stair tread sample over a 4 inch<sup>2</sup> circular area at midspan. The load required to achieve 0.125 inch deflections were recorded.

## Test Requirements

Deck board products used as stair tread, are to resist an applied load of 750 lbs, with adjustments based on strength determined in Sections 1 and 2 of this report applied.

Deck board products used as stair treads are to have a minimum load capacity of 300 lbs at 0.125" deflection, with adjustments based on stiffness determined in Sections 1 and 2 of this report applied.

dassoXTR Adjustment Factors determined in Sections 1 and 2 of this report are outlined below:

| PRODUCT          | STRENGTH ADJUSTMENT | STIFFNESS ADJUSTMENT |
|------------------|---------------------|----------------------|
| Classic Espresso | 0.927               | 0,927                |
| Epic Cognac      | 0.857               | 0.883                |

The minimum adjusted load requirements for dassoXTR products are outlined below:

| PRODUCT          | MINIMUM STAIR TREAD LOAD<br>CAPACITY (lbs) | MINIMUM LOAD REQUIRED @<br>0.125" DEFLECTION (lbs) |
|------------------|--------------------------------------------|----------------------------------------------------|
| Classic Espresso | 809                                        | 323                                                |
| Epic Cognac      | 875                                        | 340                                                |



# Test Results:

## dassoXTR Classic Espresso Stair Tread Performance Results

| SAMPLE  | THICKNESS<br>(inches) | ULT. LOAD<br>(lbs) | DEFLECTION @<br>323 lbs (inches) |
|---------|-----------------------|--------------------|----------------------------------|
| 1       | 0.798                 | 1,830              | 0.075                            |
| 2       | 0.800                 | 1,491              | 0.080                            |
| 3       | 0.798                 | 1,823              | 0.080                            |
| 4       | 0.797                 | 1,579              | 0.080                            |
| 5       | 0.797                 | 1,426              | 0.092                            |
| 6       | 0.799                 | 1,225              | 0.085                            |
| 7       | 0.797                 | 1,521              | 0.085                            |
| 8       | 0.799                 | 1,731              | 0.083                            |
| 9       | 0.800                 | 1,430              | 0.094                            |
| 10      | 0.800                 | 1,388              | 0.094                            |
| 11      | 0.798                 | 1,836              | 0.085                            |
| 12      | 0.800                 | 1,742              | 0.077                            |
| 13      | 0.796                 | 1,346              | 0.086                            |
| 14      | 0.797                 | 1,541              | 0.085                            |
| 15      | 0.796                 | 1,693              | 0.078                            |
| 16      | 0.800                 | 1,466              | 0.089                            |
| 17      | 0.800                 | 1,599              | 0.082                            |
| 18      | 0.799                 | 1,454              | 0.082                            |
| 19      | 0.798                 | 1,308              | 0.080                            |
| 20      | 0.798                 | 1,918              | 0.070                            |
| 21      | 0.799                 | 1,475              | 0.094                            |
| 22      | 0.800                 | 1,431              | 0.099                            |
| 23      | 0.800                 | 1,411              | 0.095                            |
| 24      | 0.798                 | 1,756              | 0.082                            |
| 25      | 0.799                 | 1,859              | 0.077                            |
| 26      | 0.799                 | 1,618              | 0.082                            |
| 27      | 0.798                 | 1,665              | 0.087                            |
| 28      | 0.800                 | 1,872              | 0.077                            |
| AVERAGE | 0.799                 | 1,587              | 0.084                            |
| ST DEV  | 0.001                 | 193.059            | 0.007                            |
| COV     | 0.161                 | 12.166             | 8.227                            |

Ultimate Load = 1587 lbs > 805 lbs minimum load based on strength. Deflection at 323 lbs = 0.084 inches < 0.125" based on stiffness.

Classic Expresso has met requirements for use as stair treads at 16" span.



#### dassoXTR Epic Cognac Stair Tread Performance Results

| SAMPLE  | THICKNESS<br>(inches) | ULT. LOAD<br>(lbs) | DEFLECTION @<br>340 lbs (inches) |
|---------|-----------------------|--------------------|----------------------------------|
| 1       | 0.798                 | 2,021              | 0.084                            |
| 2       | 0.798                 | 2,556              | 0.094                            |
| 3       | 0.798                 | 2,302              | 0.092                            |
| 4       | 0.797                 | 2,596              | 0.084                            |
| 5       | 0.798                 | 2,089              | 0.089                            |
| 6       | 0.799                 | 2,351              | 0.086                            |
| 7       | 0.797                 | 2,569              | 0.082                            |
| 8       | 0.796                 | 2,465              | 0.087                            |
| 9       | 0.799                 | 2,242              | 0.081                            |
| 10      | 0.799                 | 2,634              | 0.081                            |
| 11      | 0.800                 | 2,118              | 0.086                            |
| 12      | 0.798                 | 1,952              | 0.081                            |
| 13      | 0.799                 | 2,001              | 0.086                            |
| 14      | 0.799                 | 2,104              | 0.076                            |
| 15      | 0.798                 | 2,007              | 0.085                            |
| 16      | 0.798                 | 1,833              | 0.089                            |
| 17      | 0.800                 | 2,037              | 0.081                            |
| 18      | 0.800                 | 2,408              | 0.086                            |
| 19      | 0.800                 | 2,436              | 0.086                            |
| 20      | 0.800                 | 2,274              | 0.085                            |
| 21      | 0.799                 | 2,038              | 0.092                            |
| 22      | 0.797                 | 2,210              | 0.101                            |
| 23      | 0.800                 | 2,181              | 0.099                            |
| 24      | 0.800                 | 2,207              | 0.092                            |
| 25      | 0.799                 | 2,201              | 0.092                            |
| 26      | 0.798                 | 2,016              | 0.097                            |
| 27      | 0.799                 | 2,176              | 0.092                            |
| 28      | 0.798                 | 1,826              | 0.092                            |
| AVERAGE | 0.799                 | 2,209              | 0.088                            |
| ST DEV  | 0.001                 | 225.786            | 0.006                            |
| COV     | 0.138                 | 10                 | 7                                |

Ultimate Load = 2209 lbs > 875 lbs minimum load based on strength.Deflection at 340 lbs = 0.088 inches < 0.125" based on stiffness.

Classic Expresso has met requirements for use as stair treads at 16" span.



## **6.3 Mechanical Fastener Tests**

dassoXTR products outlined in this report are supplied with fasteners provided with fastener systems as outlined below:

| PRODUCT             | FASTENER TYPE                     | INSTALLATION DESCRIPTION             |
|---------------------|-----------------------------------|--------------------------------------|
| 1" Classic Espresso | Panda Claw 2 Hidden Clip System   | Panda Claw 2 hidden clip is          |
| 1" Epic Cognac      | with #7 1-3/4" length screw       | attached at each joist location with |
|                     |                                   | 1 #7 1-3/4" length screw.            |
| 2" Classic Espresso | Face fastening system with #10 3- | 2 fasteners at each joist location,  |
| 2" Epic Cognac      | 1/2" length.                      | 2" from each deck board end.         |

Decks of minimum 4' x 8' size were constructed, with 2 x 6 Southern Yellow Pine joists spaced at 24" on center used as supports for installation of the deck board samples.

Test assemblies were constructed and tested for fastener capacity in accordance with ASTM E330-14 by QAI Laboratories Inc., Medley, FL facility (formerly Fenestration Testing Laboratory (FTL), IAS TL-948 including ASTM E330).

Drawings of the fasteners, Panda Clip 2, and test decks can be found in Appendix E of this test report.

Installation Instructions can be found in Appendix E of this test report.

Test Requirements:

Uplift resistance = ultimate load with a factor of safety of 3.0 applied.

#### **Test Results:**

Results of testing dassoXTR deck board products are outlined below.

| TEST#                  | 1" CLASSIC ESPRESSO <sup>1</sup> | 2" CLASSIC ESPRESSO <sup>2</sup> | 1" EPIC COGNAC <sup>1</sup> | 2" EPIC COGNAC <sup>2</sup> |
|------------------------|----------------------------------|----------------------------------|-----------------------------|-----------------------------|
| Assembly 1 (psf)       | 232                              | 221                              | 231                         | 226                         |
| Assembly 2 (psf)       | 238                              | 228                              | 238                         | 229                         |
| Assembly 3 (psf)       | 236                              | 230                              | 223                         | 229                         |
| Average (psf)          | 235                              | 226                              | 231                         | 228                         |
| Allowable Uplift (psf) | 78 psf                           | 75 psf                           | 77 psf                      | 76 psf                      |

1: Additional details can be found in Fenestration Testing Laboratory (FTL), A Division of QAI test report 12765 dated 1/31/2022.

2: Additional details can be found in Fenestration Testing Laboratory (FTL), A Division of QAI test report 12529 dated May 7, 2021.



#### APPENDIX A – Termite Resistance Report WDL-2020-12a dated 14/1/2021 by Louisiana Fore Products Development Center

Report: WDL-2020-12a

#### Form osan Subterranean termite resistance study of dassoXTR epic cognac deckboards, dassoXTR classic expresso deckboards, untreated pine control, and reference pine control



Report #: WDL-2020-12a

Dasso USA 6060 Boat Rock Blvd. SW Suite 800 Atlanta, GA 30336

Submitted By:

Wood Durability Lab Louisiana Forest Products Development Center School of Renewable Natural Resources LSU Agricultural Center Baton Rouge, LA 70803 Tel. (225) 578-4131 Fax (225) 578-4251

January 14, 2021

We kindly request that all public references to the contents of this report be attributed to "LSU AgCenter's Wood Durability Lab"

Page 1 of 14



#### TABLE OF CONTENTS

| SIGNATORIES                                  | 3  |
|----------------------------------------------|----|
| BACKGROUND                                   | 4  |
| OBJECTIVES                                   | 5  |
| MATERIALS & METHODS                          | 5  |
| PROCEDURE                                    | 5  |
| RESULTS                                      | 6  |
| CONCLUSIONS                                  | 6  |
| REFERENCES CITED                             | 7  |
| RESULT TABLES/FIGURES                        | 8  |
| APPENDIX A: IAS CERTIFICATE OF ACCREDITATION | 11 |
| END OF REPORT                                | 14 |

Page **2** of **14** 



Report approved by:

Qinfranwu

Date: <u>1/14/2021</u>

Q.Wu, Ph.D. Professor, Wood Science Wood Durability Laboratory, Quality Manager Phone: (225) 578-8369 Fax: (225) 578-4251 E-mail: qwu@agcenter.lsu.edu

Report prepared by:

Co

J.P. Curole Research Associate Phone: (225) 578-4157 Fax: (225) 578-4251 E-mail: jcurole@agcenter.1su.edu

Date: <u>1/14/2021</u>

Page **3** of **14** 



#### Background

The Wood Durability Laboratory (WDL) at the LSU AgCenter became an ISO 17025 accredited laboratory through the International Accreditation Services (IAS) accreditation system on March 1, 2008. Additional test standards were added by IAS to the WDL approved scope of services on July 24, 2008, November 20, 2009, May 31, 2012, January 24, 2014, March 31, 2016, July 26<sup>th</sup>, 2016, and June 6<sup>th</sup>, 2018 (Table 1). The lab has been operating under ISO 17025 Guidelines for over ten years. This report is compliant with ICC-ES AC85. This report has not been reviewed by a licensed professional engineer nor a third party skilled in the art. Samples and information sheets on traceability of samples were provided by the sponsor and verified at the time of sample creation. The results from this test only relate to the items tested.

| Cable 1 | Current sco | pe and | WDL | test methods | accredited by | IAS. |
|---------|-------------|--------|-----|--------------|---------------|------|
|         |             |        |     | 100          |               | ·    |

| IAS Accreditation Number:                 | TL-350                                                                                        |
|-------------------------------------------|-----------------------------------------------------------------------------------------------|
| Accredited Entity:                        | Wood Durability Laboratory                                                                    |
| Address:                                  | 227 Renewable Natural Resources<br>Louisiana State University<br>Baton Rouge, Louisiana 70803 |
| Contact Name:                             | Dr. Qinglin Wu, Director                                                                      |
| Telephone:                                | (225) 578-8369                                                                                |
| Effective Date of Scope of Accreditation: | April 28 <sup>th</sup> , 2020                                                                 |
| Accreditation Standard:                   | ISO/IEC Standard 17025:2017                                                                   |

| Fields of Testing     | Accredited Test Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wood testing          | ASTM Standards D143 <sup>2</sup> , D1037 <sup>2</sup> (Compression Parallel to<br>surface, section 12 excluded), D2395 <sup>8</sup> , D3043 <sup>5</sup> (Methods A &<br>D only), D4442 <sup>8</sup> , and D5456 <sup>5</sup> (Test methods referenced in<br>Annex A3 & A4); AC257 <sup>3</sup> test methods referenced in Section<br>4.0, excluding 4.3.1.1, 4.3.1.2, 4.3.1.4, & 4.3.2.2)                                                                                                                                                                                                                                                                                                                                                                |
| Wood<br>preservatives | ASTM Standards D2481 <sup>3</sup> , D3273 <sup>5</sup> , D3345 <sup>1</sup> , D4442 <sup>8</sup> , D4445 <sup>3</sup> ,<br>& D5516 <sup>4</sup><br>AWPA Standards E1 <sup>1</sup> , E5 <sup>3</sup> , E7 <sup>1</sup> , E9 <sup>3</sup> , E10 <sup>1</sup> , E11 <sup>1</sup> , E12 <sup>1</sup> , E16 <sup>3</sup> ,<br>E18 <sup>3</sup> , E20 <sup>6</sup> , E21 <sup>4</sup> , E22 <sup>2</sup> , E23 <sup>2</sup> , E24 <sup>1</sup> , E26 <sup>4</sup> and E29 <sup>5</sup><br>WDMA Standards TM-1 <sup>1</sup> and TM-2 <sup>1</sup><br>WDL-SOP-25 <sup>6</sup> - Field Evaluation of Termiticide against<br>Subterranean Termites<br>AC380 <sup>7</sup> test methods referenced in Sections 3, 4.1, 4.2 and 4.3,<br>excluding 4.4.1 through 4.4.9) |

Approved: <sup>1</sup>March 1, 2008, <sup>2</sup>July 24, 2008, <sup>3</sup>November 20, 2009, <sup>4</sup>May 31, 2012, <sup>5</sup>January 24, 2014, <sup>6</sup>March 31, 2016, <sup>7</sup>July 26, 2016, <sup>8</sup>June 6, 2018, & <sup>9</sup>April 28, 2020

#### Page **4** of **14**



#### OBJECTIVES

The objective of this study was to evaluate dassoXTR Epic Expresso deckboards and dassoXTR Classic Cognac deckboards (Figure 1) for prevention of Formosan subterranean termite (*Coptotermes formosanus*) feeding in an ASTM D3345-17 no-choice test. The deckboards were compared to untreated southern pine and treated pine reference controls.

Table 2. Identification of the WPC groups plus controls.

| Treatm ent                           | Sample ID | MC ID   |
|--------------------------------------|-----------|---------|
| Untreated Pine Controls              | 1-5       | 1-5mc   |
| dassoXTR Epic Cognac deckboards      | 6-10      | 6-10mc  |
| dassoXTR Classic Expresso deckboards | 11-15     | 11-15m  |
| Treated Pine Reference Controls      | 16-20     | 16-20mc |

#### MATERIALS AND METHODS

#### Procedure

The test was performed in accordance with ASTM International D3345-17 Standard Test Method for Laboratory Evaluation of Solid Wood for Resistance to Termites (ASTM 2017). The no-choice method was used. The tested product was sampled by QAI Laboratories on July 31, 2020 at the location of manufacture in Fuzhou City, Jiangxi Province, China. QAI confirmed the products to be representative of normally manufactured products. The test was started on 12/10/20 and was completed on 1/7/21. The experiment consisted of 5 dassoXTR Epic Expresso deckboards, 5 dassoXTR Classic Cognac deckboards, 5 southern pine sapwood untreated controls, and 5 treated pine reference controls. All samples were precisely machined into  $1 \times 1 \times 14$  in. test specimens. The controls were in the correct grain orientation and contained 4-6 rings per inch.

Each test jar contained 200 grams of autoclaved sand and 40 milliliters of distilled water. A sample was placed in each jar and sand was added. Termites were obtained from Brechtel State Park (Algiers, LA) on 12/3/20 and added to the D3345-17 test on 12/10/20. One gram of Formosan subterranean termites were weighted out and added to each jar.

After 28 days of exposure, the samples were removed and cleaned with distilled water and rated using the scale below.

- 10 Surface nibbles permitted
- 9 Light attack
- 7 Moderate attack, penetration
- 4 Heavy
- 0 Failure

Page 5 of 14



#### Results

The data obtained were analyzed for termite resistance with means and standard deviations (SPSS 25). The Least Significant Difference (LSD) mean separation test procedure was used (Steel and Torrie 1980). Different capital letters following each data value within columns indicate that significant differences were found at the significance level  $\alpha = 0.05$ . Significant differences were not found among treatments when means shared the same letters within columns. All data and records collected during the tests are maintained and are available upon request per ISO 17025 Lab Guidelines.

Table 3 provides a summary of the means (Avg.) for the primary data of interest (i.e., percent mortality, percent weight loss, and treatment ratings). Table 4 provides the statistical data for termite mortality, sample weight loss, and sample rating in a descending order using the Least Significant Difference (LSD) mean separation test procedure.

<u>Percent Termite Mortality</u>. All live termites were counted after the 28-day exposure period. Percent mortality was obtained with this calculation: ((initial termites - live termites) / initial termites)\*100. As shown in Table 4, mean percent termite mortality for the untreated pine controls resulted in the lowest mortality at 8.45%. The dassoXTR Epic Cognac deckboards had 15.70%, dassoXTR Classic Expresso deckboards 16.75%, followed by the treated pine reference control at 16.75% termite mortality. The untreated control group was significantly different from all other groups the  $\alpha$ =0.05 significance level.

<u>Percent Sample Weight Loss.</u> Percent weight loss was based on the original oven dry weight using this formula: ((calculated ODWt - final ODWt)/calculated ODWt)\*100. The test sample oven dry weight is determined by measuring the moisture content of the matched sample and using it to calculate the sample oven dry weight. The final oven dry weight was determined by oven drying the sample after the test. As shown in Table 4, weight loss for the untreated pine controls resulted in the highest weight loss at 28%. The dassoXTR Epic Cognac deckboards had 7.42%, dassoXTR Classic Expresso deckboards 8.35%, followed by the treated pine reference control at 3.99% sample weight loss. The untreated pine control group and the treated pine reference controls were significantly different from each other and the deckboard groups the  $\alpha$ =0.05 significance level.

<u>Sample Rating</u>. Trained and experienced scientist estimated the extent of damage by visually sample rating each sample (Figure 2). The rating scale used was 0 to 10. The mean rating value of the untreated pine control was 1, indicating heavy attack/failure. The dassoXTR Epic Cognac deckboards and the dassoXTR Classic Expresso deckboards had an average rating of 9 indicating light attack. The treated reference pine control had an average rating of 9.5 indicating surface nibbles/light attack. The untreated pine control group was significantly different from all other groups the  $\alpha$ =0.05 significance level. It is noted that termites caused nibbling on both front and back surface of the test samples (Figure 3). It seems that more damage (nibbling) for the dassoXTR Epic Cognac deckboards and the dassoXTR Classic Expresso deckboards occurred on machined surfaces. The original board surface had higher density and termites caused less nibbling on these surfaces (Figure 3).

Page 6 of 14



#### CONCLUSIONS

The dassoXTR Epic Cognac deckboards and the dassoXTR Classic Expresso deckboards had strong resistance to termite attack, with the termites exhibiting light attack on the machined surfaces of the test samples. The treated pine controls had signs of light termite attack (nibbling) as well. The untreated pine control mortality, sample weight loss, and sample ratings were consistent with previous test results. The results from the untreated control samples indicate strong termite vigor and performance, and hence the test data are valid.

#### REFERENCES CITED

The American Society for Testing and Materials (ASTM). 2020. Standard test method for laboratory evaluation of solid wood for resistance to termites (D3345-17).

American Wood Protection Association (AWPA). 2020. Standard method for laboratory evaluation to determine resistance to subterranean termites (E1-17). 2020 book of standards. Birmingham, AL.

SPSS 25 for Windows. 2020. Chicago, IL.

Steel, R.G.D. and J.H. Torrie. 1980. Principle and procedures of statistics – A. biometrical approach. 2<sup>nd</sup> edition. McGraw Hill. New York. 633 p.

Page 7 of **14** 

| <b>Table 3.</b> Individual data for termite mortality, sample weight loss, and sample rating |
|----------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|

| WDL-2020-12a D33                     | 45 QAI 20 Ja | ar Test - | Summary ] | Fable |        |     |  |  |
|--------------------------------------|--------------|-----------|-----------|-------|--------|-----|--|--|
| Treatment                            | Mortality    | LSD       | Wt.Loss   | L SD  | Rating | LSD |  |  |
| Untreated Pine Control               | 8.45%        | A         | 28.00%    | A     | 1      | A   |  |  |
| dassoXTR Epic Cognac deckboards      | 15.70%       | В         | 7.42%     | В     | 9      | В   |  |  |
| dassoXTR Classic Expresso deckboards | 16.65%       | В         | 8.35%     | В     | 9      | В   |  |  |
| Treated Pine Reference               | 16.75%       | В         | 3.99%     | С     | 9.5    | В   |  |  |

| Table 4. | Statistical data for termite mortality, sample weight loss, and sample rat | ting. |
|----------|----------------------------------------------------------------------------|-------|
|          | WDL-2020-12a D3345 OAI 20 Jar Test                                         |       |

| Summary Tab                          | le          | 1         |  |
|--------------------------------------|-------------|-----------|--|
| Treatment                            | Mortality   | LSD Group |  |
| Untreated Pine Control               | 8.45%       | A         |  |
| dassoXTR Epic Cognac deckboards      | 15.70%      | B         |  |
| dassoXTR Classic Expresso deckboards | 16.65%      | B         |  |
| Treated Pine Reference               | 16.75%      | B         |  |
| Treatment                            | Weight Loss | LSD Group |  |
| Untreated Pine Control               | 28.00%      | A         |  |
| dassoXTR Epic Cognac deckboards      | 7.42%       | В         |  |
| dassoXTR Classic Expresso deckboards | 8.35%       | B         |  |
| Treated Pine Reference               | 3.99%       | C         |  |
| Treatment                            | Ratings     | LSD Group |  |
| Untreated Pine Control 1             |             | A         |  |
| dassoXTR Epic Cognac deckboards      | 9           | B         |  |
| dassoXTR Classic Expresso deckboards | 9           | B         |  |
| Treated Pine Reference               | 9.5         | B         |  |

\*Groups containing the same capital letter are not significantly different at  $\alpha = 0.05$ .

Page **8** of **14** 







Figure 1. Original deck boards for testing

Page 9 of 14



Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 34 of 84

Report: WDL-2020-12a



Figure 2. Test samples including controls and deckboards



Figure 3. Areas of Termite Nibbling on the deckboards

Page 10 of 14



<text><image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text>

Page 11 of 14



|    | 3060 Saturn S                                                   | International Accredit<br>Street, Suite 100, Brea, Califo                                                       | ation Service, Inc.<br>mia 92821, U.S.A. 1 www.issonline.org<br>Y LABORATORY                                                                                                                         |  |  |
|----|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | Contact Name Dr. Qinglin Wr.<br>Accredited to ISOAEG 17025 2017 |                                                                                                                 | Contact Phone +225 578-838<br>Effective Date July 9, 203                                                                                                                                             |  |  |
|    | Physical                                                        |                                                                                                                 |                                                                                                                                                                                                      |  |  |
|    | ASTM D143                                                       | Standard test methods for a                                                                                     | rall clear specimens of timber                                                                                                                                                                       |  |  |
|    | ASTM E1037                                                      | Standard test methods for a<br>panel materials (compressio                                                      | cs for evaluating properties of wood-base fiber and partic<br>pression parallel to surface section 12, excluded)                                                                                     |  |  |
|    | ASIM E2395                                                      | Standard Test Methods for I<br>Wood and Wood-Based Ma                                                           | Methods for Denaty and Specific Gravity (Relative Denaty) of<br>lod-Based Materials                                                                                                                  |  |  |
|    | ASTM D2481                                                      | Standard test method for ad<br>marine services by means o                                                       | est method for addeterated evaluation of wood preservatives for<br>vides hy means of small size specimens                                                                                            |  |  |
|    | ASTM C3043<br>ASTM C3273                                        | Standard test methods for a<br>Standard test method for re-<br>coalings in an environn enta                     | Nandarc test methods for structural panels in flexurs (methods A and D only<br>Nandarc test method for resistance to growth of mold on the surface of inter<br>xeltinus in a remiron ential dramiter |  |  |
|    | ASTM D3345                                                      | Standard test method for lat<br>materials for resistance to te                                                  | darc test method for laboratory evaluation of wood and other cellulosic<br>vials for residance to termities                                                                                          |  |  |
|    | ASTM C4+42                                                      | Standard Test Methods for I<br>Wood-Based Materials                                                             | andaric Test Methods for Direct Moisture Content Measurement of Wood<br>cod-Based Materials                                                                                                          |  |  |
|    | ASTIM D4443                                                     | Standard test method for fur<br>unscasoned lumper (laboral                                                      | ethec for fungicides for controlling sapstain and mold on<br>noor (laboratory mothod)                                                                                                                |  |  |
| 1  | ASTM C5456                                                      | Standard specification for ev<br>(lest methods referanced in                                                    | dare specification for evaluation of structural composite lumber products<br>methods referenced in annex A3 and A4 only)                                                                             |  |  |
| N  | ASTM E5516                                                      | Standard test method for ev<br>treated softwood plywood ex                                                      | Standard test method for evaluating the 1exural properties of fire-retardant<br>treated softwood plywood exposed to a evated temperatures                                                            |  |  |
| N. | AWPA E1                                                         | Laboratory methods for eval<br>malerials, choice and no-du                                                      | uating the termite resistance of wood-based<br>nine leafs                                                                                                                                            |  |  |
|    | AVVPA ES                                                        | Standard test method for ev<br>applications (LC54, UC58                                                         | Standard test method for evaluation of wood preservatives to be used in mar<br>applications (UCSA, UCSB, UCSC); penel and block tests                                                                |  |  |
|    | AWPA E7                                                         | Standard field test for evaluation of the standard (JC4A, UC4R, UC4                                             | andarc field test for evaluation of wood preservatives to be used in ground<br>mact (JC4A, UC4B, UC4C); stake test                                                                                   |  |  |
|    | AVVPA E9                                                        | Standard field test for the evaluation of wood preservatives to be used<br>ground (UC3A and UC3B); L (bint test |                                                                                                                                                                                                      |  |  |

Page 12 of 14


Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 37 of 84

Report: WDL-2020-12a

|              | Laboratory method for evaluating the decay resistance of wood-based materia<br>against pure basidiomycete pultures: soil/block test                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AWPA E11     | Standard method for accelerated evaluation of preservative leaching                                                                                                                                   |
| AWPA E12     | Standard method of determining corresion of metal in confact with treated woo                                                                                                                         |
| AWPA E16     | Standard field test for evaluation of wood preservatives to be used above<br>ground (UC3B); hor zontal lap-joint test                                                                                 |
| AWPA E18     | Standard field, test for evaluation of wood preservatives to be used above<br>ground (UC3B): ground proximity decay test                                                                              |
| AWPA E20     | Standard method of determining the depletion of wood preservatives in sol<br>contact                                                                                                                  |
| AWPA E21     | Standard field test method for the evaluation of wood preservatives to be used<br>for interior applications (JC1 and UC2); full-size commodity termite test                                           |
| AWPA C22     | Laboratory method for rapidly evaluating the decay resistance of wood-based<br>materials against pure pastdiomycere cultures using compression strength:<br>apil/water test                           |
| AWPA E23     | Laboratory method for rapidly evaluating the decay resistance of wood-based<br>materials in ground contact using static bending; so I jar test                                                        |
| AWPA F74     | I abmatry method for evaluating the mold resistance of wond-based materials<br>mold chember test                                                                                                      |
| AWPA E26     | Standard field test for evaluation of wood preservatives intended for interior<br>applications (UC1 and UC2); ground proximity tomits test                                                            |
| AWPA E29     | Antisapstain field test method for green lumber                                                                                                                                                       |
| ICC ES AC257 | Convosion-resistant fasteners and evaluation of compsion effects of wood<br>treatment onemicals (test methods referenced in section 4.3, excluding section<br>4.3,1.1, 4.3, 1.2, 4.3,1.4 and 4.3,2.2; |
| ICC ES AC380 | Terrific physical barrier systems (test methods referenced in sections 3, 4.1, 4.2 and 4.3, excluding 4.4.1 through 4.4.9)                                                                            |
| 1ND -50P-25  | Field evaluation of termiticide against subterranean termities                                                                                                                                        |
| WDMA T M. 1  | Soil block test method                                                                                                                                                                                |
| WDMA T M. 2  | Swellometer test method                                                                                                                                                                               |

Page 13 of 14



End of report

Page 14 of 14



# APPENDIX B – Fungal Resistance Report WDL-2020-12b dated 4/16/2021 by Louisiana Fore Products Development Center

Report: WDL-2020-12b

Decay resistance study of dassoXTR epic cognac deckboards, dassoXTR classic expresso deckboards, untreated pine control, and reference pine control



Report #: WDL-2020-12b

Dasso USA 6060 Boat Rock Blvd. SW Suite 800 Atlanta, GA 30336

Submitted By:

Wood Durability Lab Louisiana Forest Products Development Center School of Renewable Natural Resources LSU Agricultural Center Baton Rouge, LA 70803 Tel. (225) 578-4131 Fax (225) 578-4251

4/16/2021

This report shall not be reproduced except in full without approval of the laboratory.

We kindly request that all public references to the contest of this report be attributed to "LSU AgCenter's Wood Durability Laboratory"

Page 1 of 15



# TABLE OF CONTENTS

| SIGNATORIES                                  |
|----------------------------------------------|
| BACKGROUND                                   |
| OBJECTIVES                                   |
| MATERIALS AND METHODS                        |
| RESULTS                                      |
| CONCLUSIONS 6                                |
| REFERENCES CITED                             |
| RESULT TABLES                                |
| FIGURES                                      |
| APPENDIX A: IAS Certificate of Accreditation |
| END OF REPORT                                |

Page 2 of 15



Report approved by:

Qinghanwu

Q.Wu, Ph.D. Professor, Wood Science Wood Durability Laboratory Director Phone: (225) 578-8369 Fax: (225) 578-4251 E-mail: qwu@agcenter.1su.edu

Report prepared by:

Co

J.P. Curole Research Associate Wood Durability Technical Manager Phone: (225) 578-4157 Fax: (225) 578-4251 E-mail: jcurole@agcenter.lsu.edu Date: <u>4/16/21</u>

Date: <u>4/16/21</u>

Page **3** of **15** 



# BACKGROUND

The Wood Durability Laboratory (WDL) at the LSU AgCenter became an ISO 17025 accredited laboratory through the International Accreditation Services (IAS) accreditation system on March 1, 2008. Additional test standards were added by IAS to the WDL approved scope of services on July 24, 2008, November 20, 2009, May 31, 2012, January 24, 2014, March 31, 2016, July 26<sup>th</sup>, 2016, and June 6<sup>th</sup>, 2018 (Table 1). The lab has been operating under ISO 17025 Guidelines for over ten years. This report is compliant with ICC-ES AC85. This report has not been reviewed by a licensed professional engineer nor a third party skilled in the art. Samples and information sheets on traceability of samples were provided by the sponsor and verified at the time of sample creation. The results from this test only relate to the items tested.

| Fable 1   | Current scope | and     | WDL   | test methods    | accredited  | by IAS. |
|-----------|---------------|---------|-------|-----------------|-------------|---------|
| L GOIC L. | Owner acope   | DITL'04 | AATAT | 102111011001000 | HO CLOWLOCK | UY HIN  |

| IAS Accreditation Number:                 | TL-350                                                                                        |
|-------------------------------------------|-----------------------------------------------------------------------------------------------|
| Accredited Entity:                        | Wood Durability Laboratory                                                                    |
| A ddress:                                 | 227 Renewable Natural Resources<br>Louisiana State University<br>Baton Rouge, Louisiana 70803 |
| Contact Name:                             | Dr. Qinglin Wu, Director                                                                      |
| Telephone:                                | (225) 578-8369                                                                                |
| Effective Date of Scope of Accreditation: | April 28 <sup>th</sup> , 2020                                                                 |
| Accreditation Standard:                   | ISO/IEC Standard 17025:2017                                                                   |

| Fields of Testing     | Accredited Test Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wood testing          | ASTM Standards D143 <sup>2</sup> , D1037 <sup>2</sup> (Compression Parallel to<br>surface, section 12 excluded), D2395 <sup>8</sup> , D3043 <sup>5</sup> (Methods A &<br>D only), D4442 <sup>8</sup> , and D5456 <sup>5</sup> (Test methods referenced in<br>Annex A3 & A4); AC257 <sup>3</sup> test methods referenced in Section<br>4.0, excluding 4.3.1.1, 4.3.1.2, 4.3.1.4, & 4.3.2.2)                                                                                                                                                                                                                                                                                                                                                                |
| Wood<br>preservatives | ASTM Standards D2481 <sup>3</sup> , D3273 <sup>5</sup> , D3345 <sup>1</sup> , D4442 <sup>8</sup> , D4445 <sup>3</sup> ,<br>& D5516 <sup>4</sup><br>AWPA Standards E1 <sup>1</sup> , E5 <sup>3</sup> , E7 <sup>1</sup> , E9 <sup>3</sup> , E10 <sup>1</sup> , E11 <sup>1</sup> , E12 <sup>1</sup> , E16 <sup>3</sup> ,<br>E18 <sup>3</sup> , E20 <sup>6</sup> , E21 <sup>4</sup> , E22 <sup>2</sup> , E23 <sup>2</sup> , E24 <sup>1</sup> , E26 <sup>4</sup> and E29 <sup>5</sup><br>WDMA Standards TM-1 <sup>1</sup> and TM-2 <sup>1</sup><br>WDL-SOP-25 <sup>6</sup> - Field Evaluation of Termiticide against<br>Subterranean Termites<br>AC380 <sup>7</sup> test methods referenced in Sections 3, 4.1, 4.2 and 4.3,<br>excluding 4.4.1 through 4.4.9) |

Approved: <sup>1</sup>March 1, 2008, <sup>2</sup>July 24, 2008, <sup>3</sup>November 20, 2009, <sup>4</sup>May 31, 2012, <sup>5</sup>January 24, 2014, <sup>6</sup>March 31, 2016, <sup>7</sup>July 26, 2016, <sup>8</sup>June 6, 2018, & <sup>9</sup>April 28, 2020

Page 4 of 15



# OBJECTIVES

The objective of this study was to evaluate dassoXTR Epic Expresso deckboards and dassoXTR Classic Cognac deckboards, untreated southern pine control, sweetgum control, and treated reference control for prevention of decay attack in an AWPA E10 soil-block culture test.

# MATERIALS

Representative material was sampled by QAI Laboratories on July 31, 2020 at the location of manufacture in Fuzhou City, Jiangxi Province, China (Table 2). QAI confirmed the products to be representative of normally manufactured products.

## Table 2. Identification of test sample groups

| WDL-2020-12b E10 dec ay test         |                      |                      |  |  |
|--------------------------------------|----------------------|----------------------|--|--|
| Treatment Groups                     | Brown Rot Fungus     | White Rot Fungus     |  |  |
| dassoXTR Epic Cognac deckboards      |                      | 200 2000X            |  |  |
| dassoXTR Classic Expresso deckboards | Gloeophyllum         | Trametes versicolor  |  |  |
| Untreated pine                       | trabeum (GT) &       | (TV) & Irpex lacteus |  |  |
| Untreated Sweetgum                   | Postia placenta (PP) | (IL)                 |  |  |
| ACQ Treated Pine                     |                      | 6104073              |  |  |

| WDL-2020-12b E10 dec ay test |                     |        |       |                     |        |  |  |
|------------------------------|---------------------|--------|-------|---------------------|--------|--|--|
| D                            | Controls            | Fungus | ID    | Controls            | Fungus |  |  |
| 1-5                          | dassoXTR Epic       | GT     | 11-15 | dassoXTR Epic       | TV     |  |  |
| 6-10                         | Cognac deckboards   | PP     | 16-20 | Cognac deckboards   | L      |  |  |
| 21-25                        | dassoXTR Classic    | GT     | 31-35 | dassoXTR Classic    | TV     |  |  |
| 26-30                        | Expresso deckboards | PP     | 36-40 | Expresso deckboards | IL,    |  |  |
| 41-45                        | TT                  | GT     | 51-55 |                     | TV     |  |  |
| 46-50                        | Untreated Pine      | PP     | 56-60 | Untreated Sweetgum  | IL     |  |  |
| 61-65                        | 100m · 10           | GT     | 71-75 | 100m - 10           | TV     |  |  |
| 66-70                        | ACQ Treated Pine    | PP     | 76-80 | ACQ I reated Pine   | IL.    |  |  |

# METHODS

Testing procedures used were based on the AWPA E10-16 "Standard Method of Wood Preservatives by Laboratory Soil-Block Cultures" (AWPA 2019). Decay fungi were obtained from the USDA FPL, Madison, Wisconsin, consisting of *Gloeophyllum trabeum*, *Postia placenta, Trametes versicolor*, and *Irpex lacteus*. The decay fungi were grown on agar media for two weeks prior to being placed into the testing bottles (on the top of each feeder strip). After a two-week growing period in the testing bottles (allowing the fungi to grow on the feeder strip); test samples were placed on top of the feeder strips. Substrates used were southern pine for brown rot decay and sweetgum for white rot decay. Five samples were tested per group.

# Page **5** of **15**



## RESULTS

Table 3 summarizes the brown rot fungi data and Table 4 summarizes the white rot fungi data for weight loss. Figure 1 shows plots of the individual groups against the brown rot decay fungi. Figure 2 shows plots of the individual groups against the white rot decay fungi.

- Gloeophyllum trabeum The pine controls had the largest weight loss at 40.07%. The dassoXTR Epic Cognac deckboards and dassoXTR Classic Expresso deckboards had 9.3 and 8.71% weight loss. The ACQ groups had the lowest sample weight loss at 5.82 %.
- Postia placenta The pine controls had the largest weight loss at 38.67%. The dassoXTR Epic Cognac deckboards and dassoXTR Classic Expresso deckboards had 9.45 and 9.25% weight loss. The ACQ groups had the lowest sample weight loss at 6.2%.
- Trametes versicolor The sweetgum controls had the largest weight loss at 44.67%. The dassoXTR Epic Cognac deckboards and dassoXTR Classic Expresso deckboards had 8.87 and 8.46% weight loss. The ACQ groups had the lowest sample weight loss at 6.89%.
- Irpex lacteus The sweetgum controls had the largest weight loss at 24.36%. The dassoXTR Epic Cognac deckboards and dassoXTR Classic Expresso deckboards had 9.39 and 9.37% weight loss. The ACQ groups had the lowest sample weight loss at 7.48%.

Thus, untreated control wood (pine and sweetgum) showed high sample weight loss; therefore, the fungi were considered to be of high vigor to yield valid data. The decay fungi caused similar wood damage to the dassoXTR Epic Cognac deckboards and dassoXTR Classic Expresso deckboards for each fungus. When tested against all four fungi, the dassoXTR Classic Expresso deckboards had lightly less sample weight loss; however, the weight loss values were not significantly different from the dassoXTR Epic Cognac deckboards. The ACQ treated wood had similar results for all four fungi types and also had the lowest percentage weight loss of all groups.

## CONCLUSIONS

This test demonstrated that the dassoXTR deckboards had good resistance to the decay fungi compared with the untreated pine and sweetgum controls. When compared with ACQ treated wood, the dassoXTR deckboards had slightly more weight losses. The ACQ samples performed as expected and had similar weight losses as in previous tests. The untreated control wood showed high sample weight loss; therefore, the fungi were considered to be of high vigor and the data are valid.

Page 6 of 15



## REFERENCES CITED

American Wood Protection Association (AWPA). 2020. Standard Method of Testing WoodPreservatives by Laboratory Soil-Block Cultures (E10-16). 2020 book of standards. Birmingham, AL.

American Society for Testing and Materials Standard Test Method for Wood Preservatives by Laboratory Soil-block Cultures (ASTM D1413).

SPSS 25 for Windows. 2021. Chicago, IL.

Steel, R.G.D. and J.H. Torrie. 1980. Principle and procedures of statistics – A biometrical approach. 2<sup>nd</sup> edition. McGraw Hill. New York. 633 p.

Page 7 of **15** 

## Table 3. Summary data for weight loss % for brown rot fungi.

| WDL-2020-12b E10 decay test - Brown Rot Weight Loss Stats |           |               |           |  |  |  |
|-----------------------------------------------------------|-----------|---------------|-----------|--|--|--|
| Group ID                                                  | BR Decay  | Weight Loss % | LSD Group |  |  |  |
| ACQ treated Pine                                          | n         | 5.82          | Α         |  |  |  |
| dassoXTR Classic Expresso deckboards                      | <b>77</b> | 8.71          | AB        |  |  |  |
| dassoXTR Epic Cognac deckboards                           | GI        | 9.30          | В         |  |  |  |
| Untreated Pine                                            |           | 40.07         | С         |  |  |  |
| Group ID                                                  | BR Decay  | Weight Loss % | LSD Group |  |  |  |
| ACQ treated Pine                                          | 6         | 6.20          | Α         |  |  |  |
| dassoXTR Classic Expresso deckboards                      | DD        | 9.25          | В         |  |  |  |
| dassoXTR Epic Cognac deckboards                           | PP        | 9.45          | В         |  |  |  |
|                                                           |           |               |           |  |  |  |

\*Weight loss values sharing a capitol LSD letter are not significantly different at a=0.05.

# Table 4. Summary data for weight loss % for white rot fungi.

| WDL-2020-12b E10 decay test - White Rot Weight Loss Stats |          |               |           |  |  |  |
|-----------------------------------------------------------|----------|---------------|-----------|--|--|--|
| Group ID                                                  | BR Decay | Weight Loss % | LSD Group |  |  |  |
| ACQ treated Pine                                          |          | 6.89          | Α         |  |  |  |
| dassoXTR Classic Expresso deckboards                      |          | 8.46          | A         |  |  |  |
| dassoXTR Epic Cognac deckboards                           | τV       | 8.87          | A         |  |  |  |
| Untreated Sweetgum                                        | (h)      | 44.67         | В         |  |  |  |
| Group ID                                                  | BR Decay | Weight Loss % | LSD Group |  |  |  |
| ACQ treated Pine                                          |          | 7.48          | Α         |  |  |  |
| dassoXTR Classic Expresso deckboards                      | TT ε     | 9.37          | B         |  |  |  |
| dassoXTR Epic Cognac deckboards                           | 111-     | 9.39          | В         |  |  |  |
| Untreated Sweetgum                                        |          | 24.36         | C         |  |  |  |

\*Weight loss values sharing a capitol LSD letter are not significantly different at α=0.05.

Page 8 of 15





Figures 1. Graphs of means for percent weight loss when tested against brown rot fungi for 16 weeks.

Page 9 of 15





Figure 2. Graph of means for percent weight loss when tested against white rot fungi for 16 weeks.

Page 10 of 15





Figure 3. Samples after decay exposure. Each group left to right contain dassoXTR Epic Cognac deckboard, dassoXTR Classic Expresso deckboard, untreated controls or untreated sweetgum controls, and reference controls.

Page  $11 ext{ of } 15$ 





Page 12 of 15



Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 51 of 84

Report: WDL-2020-12b

| 3060 Saturn S                       | International Accredit<br>Street, Suite 100, Brea, Califo     | tation Service, Inc.<br>mia 92821, U.S.A. 1 www.issonline.org                                         |
|-------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Contact Name I<br>Accredited to ISI | Dr. Qingliu Wi.<br>DAFG 17025 2017                            | Contact Phone +225 578-8389<br>Effective Date Suly 9, 2020                                            |
| Physical                            |                                                               |                                                                                                       |
| ASTM D143                           | Standard test methods for a                                   | mall clear specimens of timber                                                                        |
| ASTM E1037                          | Standard test methods for a<br>panel materials (compression   | valuating properties of wood-base fiber and particle<br>in parallel to surface (section 12, excluded) |
| ASTM L2395                          | Standard Test Methods for<br>Wood and Wood-Based Me           | Density and Specific Gravity (Relative Density) of<br>terials                                         |
| ASTM C2481                          | Standard test method for ad<br>marine services by means o     | aderated evaluation of wood preservatives for<br>if small size specimens                              |
| ASTM D3043                          | Standard test methods for a                                   | tructural panals in flexure (methods A and D only)                                                    |
| ASTM C3273                          | Standard test method for re-<br>coalings in an environn enta  | sistance to growth of mold on the surface of interior<br>Il d'amber                                   |
| ASTM D3345                          | Standard test method for lat<br>materials for resistance to k | orratory evaluation of wood and other cellulosic<br>emities                                           |
| ASTM E4+42                          | Standard Test Methods for I<br>Wood-Based Materials           | Dred: Maisture Conten: Measurement of Wood and                                                        |
| ASTIM D4443                         | Standard test method for ful<br>unscasoned lumper (labora     | ngioides for controlling sapstain and mold on<br>tory mothod)                                         |
| ASTM C5456                          | Standard specification for el<br>(lest methods referenced in  | valuation of structural composite lumber products<br>annex A3 and A4 only)                            |
| ASTM C5516                          | Standard test method for ev<br>treated softwood plywood e     | aluating the 1exural properties of fire-retarcant<br>sposed to elevated temperatures                  |
| AVVPA E1                            | Laboratory methods for eva<br>malerials, choice and north     | luating the termitie resistance of wood-based<br>nice: ests                                           |
| AVUPA ES                            | Standard test method for ev<br>applications (UC5A, UC5B       | aluation of wood preservatives to be used in marine<br>JCSC); penel and block tests                   |
| AWPA E7                             | Standard field test for evalu-<br>contact (JC4A, UC4B, UC4    | ation of wood preservatives to be used in ground<br>C); stake test                                    |
| AWPA E9                             | Standard field test for the events (UC3A) and UC3B)           | aluation of wood preservatives to be used above<br>Lip of text                                        |

Page 13 of 15



Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 52 of 84

Report: WDL-2020-12b

| AWPA E10     | Laboratory method for evaluating the decay resistance of wood-based mater<br>against pure basidiomycete cultures: soil/block test                                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AWPA E11     | Standard method for accelerated evaluation of preservative leaching                                                                                                                                 |
| AWPA E12     | Standard method of determining corresion of metal in contact with treated wo                                                                                                                        |
| AWPA E16     | Standard field test for evaluation of wood preservatives to be used above<br>ground (UC3B); hor zonfal lap-joint test                                                                               |
| AWPA E18     | Standard field test for evaluation of wood preservatives to be used above<br>ground (UC3B); ground proximity decay test                                                                             |
| AWPA E20     | Standard method of determining the depletion of wood preservatives in sol<br>contact                                                                                                                |
| AWPA E21     | Standard field test method for the evaluation of v.coc preservatives to be use<br>for imerior applications (JC1 and UC2); full-size commodity termite test                                          |
| AWPA E22     | Laboratory method for rapidly evaluating the decay resistance of wood-based<br>materials against pure pastdion yeers outputs using compression strength:<br>apil/water test                         |
| AWPA E23     | Laboratory method for rapidly evaluating the decay resistance of wood-based<br>materials in ground contact using static bending; soll jar test                                                      |
| AWPA F74     | I aboratory method for evaluating the mold resistance of wood-based materia<br>mold chember test                                                                                                    |
| AWPA E26     | Standard field test for evaluation of wood preservatives intended for interior<br>applications (UC1 and UC2); ground preximity tormite test                                                         |
| AWPA E29     | Antisapstain field test method for green lumber                                                                                                                                                     |
| ICC ES AC257 | Convosion-resistant fasteners and evaluation of corrosion effects of wood treatment onemicals (test methods referenced in section 4.3, excluding section 4.3, 1.1, 4.3, 1.2, 4.3, 1.4 and 4.3, 2.2; |
| ICC ES AC380 | Territle physical barrier systems (test methods referenced in sections 3, 4.1, 4.2 and 4.3, excluding 4.4.1 through 4.4.9)                                                                          |
| 100 -50P-25  | Field evaluation of termiticide against subternanean termities                                                                                                                                      |
| WDMA T M. 1  | Soil block test method                                                                                                                                                                              |
| WUTHAA T M O | Swellometer test method                                                                                                                                                                             |

Page 14 of 15



End of report

Page 15 of 15



# APPENDIX C – Surface Burning Characteristics Report RJ7637F-1arev1 dated 05/11/2022 for Epic Cognac by QAI Laboratories

| M     | LABORATORI                  | ES    |
|-------|-----------------------------|-------|
| (uni) | CERTIFICATION TESTING INSPE | CTION |

8385 White Oak Avenue Rancho Cucamonga, CA 91730 909.483.0250 ph. | 909.483.0336 fx.

| CLIENT:              | DASSO USA<br>6060 Boat Rock Blvd. SW, Suite 800<br>Atlanta, GA 30336                                                                                                                                                                                                                 |                                                                                        |                                                                                              |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Test Report Number : | RJ7637F-1a rev1                                                                                                                                                                                                                                                                      | Revision Date:                                                                         | May 11, 2022                                                                                 |
| SAMPLE ID:           | The client identified the following test material as:<br>dassoXTR Epic Cognac composite bamboo decking m                                                                                                                                                                             | naterial of 2" (51 mm) thickr                                                          | ness.                                                                                        |
| SAMPLING DETAIL:     | Test Samples were witnessed at the location of manufacture in Xiandal Z huchanye Yuanqu, Gaobu Town, Zixi<br>Country, Fuzhou City, Jianxi Province China by QAI personnel FEY Han on July 31, 2020. Samples were<br>comfirmed to be representative of normally manufactured product. |                                                                                        |                                                                                              |
| DATE OF RECEIPT:     | Samples were received at QAI facilities on:                                                                                                                                                                                                                                          | 9/12/2020.                                                                             |                                                                                              |
| TESTING PERIOD:      | November 2, 2020.                                                                                                                                                                                                                                                                    |                                                                                        |                                                                                              |
| AUTHORIZATION:       | Testing was authorized by DASSO USA for proposal 20JL05211R3 dated May 29, 2020. signed May 29, 2020.                                                                                                                                                                                |                                                                                        |                                                                                              |
| TEST REQUESTED:      | Perform standard flame spread and smoke density der<br>Client in accordance with ASTM E84 - 18b "Standard I<br>Building Materials". The foregoing test procedure is co<br>1                                                                                                          | veloped classification tests<br>Method of Test for Surface<br>mparable to UL 723, ANSI | on the sample supplied by the<br>Burning Characteristics of<br>/NFPA No. 255, and UBC No. 8- |

TEST RESULTS:

Flame Spread 25 Smoke Developed 10

CONCLUSION:

When tested in accordance to ASTM E84-18b the tested material resulted in a Class 'A'. Detailed test results are presented in the subsequent pages of this report

Prepared By

Brin Estega

Brian Ortega Fire Lab Manager

Signed for and on behalf of QAI Laboratories, Inc.

Jason Friedrich

Éngineering Manager

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.





RJ7637F-1a rev1-DASSO USA-dassoXTR Epic Cognac - E84-05112022 Date: 5/11/2022 Page 2 of 7

**SCOPE:** This fire-test-response standard is used for the comparative surface burning behavior of building materials is applicable to exposed surfaces such as walls, ceilings and others. The test is conducted with the specimen in the ceiling position with the surface to be evaluated exposed face down to the ignition source. The material, product, or assembly shall be capable of being mounted in the test position during the test. Thus, the specimen shall either be self-supporting by its own structural quality, held in place by added supports along the test surface, or secured from the back side. The purpose of this test method is to determine the relative burning behavior of the material by observing the flame spread along the specimen. Flame spread and smoke developed index are reported. However, there is not necessarily a relationship between these two measurements.

**USE:** The use of supporting materials on the underside of the test specimen has the ability to lower the flame spread index from those which might be obtained if the specimen could be tested without such support. These test results do not necessarily relate to indices obtained by testing materials without such support.

Testing of materials that melt, drip, or delaminate to such a degree that the continuity of the flame front is destroyed, results in low flame spread indices that do not relate directly to indices obtained by testing materials that remain in place.

This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.

**PROCEDURE:** A brief overview of the method is as follows: The test specimen, a material between 20 and 24 inches in width by 24 feet +/- 12 inches in length is loaded onto the water cooled ledge of the fire test chamber when tested to ASTM E84 or CAN/ULC-S102. If tested to CAN/ULC-S102.2 the specimen is tested on the chamber floor. The inside dimensions are 17 3/4 inches +/- 1/4" wide by 12 inches +/- 1/2" deep by 25 feet long. The fire test chamber is a rectangular horizontal duct with a removable lid. The sides and base of the chamber are lined with an insulated firebrick with pressure tight observation windows down one side for a technician to observe flame progression during the duration of the 10-minute test period. The chamber lid is lowered into test position with non combustible concrete board placed between the specimen and chamber lid. A draft of 240 feet per minute which is maintained inside the test chamber throughout the test period by the means of an electronic fan afterburner and an electronically controlled damper door system located downstream of the test chamber in the exhaust ducting. The test is started when the test flame is ignited at the front of the test chamber. An electronic photocell system located in the exhaust system downstream from the test chamber is used to plot the smoke developed for use in calculating the smoke developed index while a technician plots the flame spread distance used in determining the flame spread index. The test is run for the 10 minute duration in accordance to the method.

(See Diagrams in the Appendix of this report.)

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.



RJ7637F-1a rev1-DASSO USA-dassoXTR Epic Cognac - E84-05112022

Date: 5/11/2022 Page 3 of 7 PREPARATION AND CONDITIONING: #N/A MOUNTING METHOD: #N/A **ASTM E84 TEST RESULTS:** CLIENT NAME: DASSO USA TEST DATE: November 2, 2020. SAMPLE ID: dassoXTR Epic Cognac composite bamboo decking material of 2" (51 mm) thickness. SAMPLE IGNITION: 01:07 Minutes / Seconds MAX FLAME FRONT: 8.1 Feet Minutes / Seconds TIME TO MAXIMUM SPREAD: 09:25 10:00 Minutes / Seconds TEST DURATION: SUMMARY: FLAME SPREAD: 27 Unrounded 25 SMOKE DEVELOPED: 12 Unrounded 10

#### **OBSERVATIONS:**

A Maximum Flamefront of 8.1 feet was observed at 09:25. The Test was terminated at 10:00.

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.





RJ7637F-1a rev1-DASSO USA-dassoXTR Epic Cognac - E84-05112022 Date: 5/11/2022 Page 4 of 7

### SUMMARY OF ASTM E84 / UL 723 RESULTS:

Because of the possible variations in reproducibility, the results are adjusted to the nearest figure divisible by 5. Smoke Density values over 200 are rounded to the nearest figure divisible by 50.

In order to obtain the Flame Spread Classification, the above results should be compared to the following table:

| NFPA CLASS <sup>1</sup> | IBC CLASS <sup>2</sup> | FLAME SPREAD   | SMOKE DEVELOPED           |
|-------------------------|------------------------|----------------|---------------------------|
| A                       | A                      | 0 through 25   | Less than or equal to 450 |
| В                       | В                      | 26 through 75  | Less than or equal to 450 |
| С                       | С                      | 76 through 200 | Less than or equal to 450 |

#### BUILDING CODES CITED:

1. National Fire Protection Association, ANSI/NFPA No. 101, "Life Safety Code"

2. International Building Code, Chapter 8, Interior Finishes, Section 803.

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.





THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.





Diagram 2. Test Chamber looking down chamber showing critical dimensions.

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.





RJ7637F-1a rev1-DASSO USA-dassoXTR Epic Cognac - E84-05112022 Date: 5/11/2022 Page 7 of 7

## **REVISION HISTORY**

07/15/2021: 05/02/2022: Report published. Update to include sample thickness, correct report client sample name (dassoXTR) on report.

This page intentionally left blank.

\*\*\*<<<END OF TEST REPORT>>>\*\*\*

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.





# APPENDIX D – Surface Burning Characteristics Report RJ7637F-1brev1 dated 05/11/2022 for Classic Espresso by QAI Laboratories

(IA) LABORATORIES

8385 White Oak Avenue Rancho Cucamonga, CA 91730 909.483.0250 ph. | 909.483.0336 fx.

| CLIENT:              | <b>Dasso USA</b><br>6060 Boat Rock Blvd. SW, Suite 800<br>Atlanta, GA 30336                                                                                                                                                                                                          |                                                                                |                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Test Report Number : | RJ7637F-1b rev1                                                                                                                                                                                                                                                                      | Date:                                                                          | May 11, 2022                                                                                |
| SAMPLE ID:           | The client identified the following test material as:<br>dassoXTR Classic Espresso composite bamboo decking                                                                                                                                                                          | material of 2" (51 mm) th                                                      | nickness.                                                                                   |
| SAMPLING DETAIL:     | Test Samples were witnessed at the location of manufacture in Xiandal Z huchanye Yuanqu, Gaobu Town, Zixi<br>Country, Fuzhou City, Jianxi Province China by QAI personnel FEY Han on July 31, 2020. Samples were<br>comfirmed to be representative of normally manufactured product. |                                                                                |                                                                                             |
| DATE OF RECEIPT:     | Samples were received at QAI facilities on:                                                                                                                                                                                                                                          | 9/12/2020.                                                                     |                                                                                             |
| TESTING PERIOD:      | November 2, 2020.                                                                                                                                                                                                                                                                    |                                                                                |                                                                                             |
| AUTHORIZATION:       | Testing was authorized by DASSO USA for proposal 20JL05211R3 dated May 29, 2020. signed May 29, 2020.                                                                                                                                                                                |                                                                                |                                                                                             |
| TEST REQUESTED:      | Perform standard flame spread and smoke density develor<br>Client in accordance with ASTM E84 - 18b "Standard Met<br>Building Materials". The foregoing test procedure is comp<br>1                                                                                                  | ped classification tests of hod of Test for Surface I arable to UL 723, ANSI/I | on the sample supplied by the<br>Burning Characteristics of<br>NFPA No. 255, and UBC No. 8- |

TEST RESULTS:

Flame Spread 25 Smoke Developed 25

CONCLUSION:

When tested in accordance to ASTM E84-18b the tested material resulted in a Class 'A'. Detailed test results are presented in the subsequent pages of this report

Prepared By

Brin Ontega

Brian Ortega Fire Lab Manager

Signed for and on behalf of QAI Laboratories, Inc.

Jason Friedrich

Engineering Manager

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.







RJ7637F-1b rev1-DASSO USA-dassoXTR - Classic Espresso - E84-05112022 Date: 5/11/2022 Page 2 of 7

**SCOPE:** This fire-test-response standard is used for the comparative surface burning behavior of building materials is applicable to exposed surfaces such as walls, ceilings and others. The test is conducted with the specimen in the ceiling position with the surface to be evaluated exposed face down to the ignition source. The material, product, or assembly shall be capable of being mounted in the test position during the test. Thus, the specimen shall either be self-supporting by its own structural quality, held in place by added supports along the test surface, or secured from the back side. The purpose of this test method is to determine the relative burning behavior of the material by observing the flame spread along the specimen. Flame spread and smoke developed index are reported. However, there is not necessarily a relationship between these two measurements.

**USE:** The use of supporting materials on the underside of the test specimen has the ability to lower the flame spread index from those which might be obtained if the specimen could be tested without such support. These test results do not necessarily relate to indices obtained by testing materials without such support.

Testing of materials that melt, drip, or delaminate to such a degree that the continuity of the flame front is destroyed, results in low flame spread indices that do not relate directly to indices obtained by testing materials that remain in place.

This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.

**PROCEDURE:** A brief overview of the method is as follows: The test specimen, a material between 20 and 24 inches in width by 24 feet +/- 12 inches in length is loaded onto the water cooled ledge of the fire test chamber when tested to ASTM E84 or CAN/ULC-S102. If tested to CAN/ULC-S102.2 the specimen is tested on the chamber floor. The inside dimensions are 17 3/4 inches +/- 1/4" wide by 12 inches +/- 1/2" deep by 25 feet long. The fire test chamber is a rectangular horizontal duct with a removable lid. The sides and base of the chamber are lined with an insulated firebrick with pressure tight observation windows down one side for a technician to observe flame progression during the duration of the 10-minute test period. The chamber lid is lowered into test position with non combustible concrete board placed between the specimen and chamber lid. A draft of 240 feet per minute which is maintained inside the test chamber throughout the test period by the means of an electronic fan afterburner and an electronically controlled damper door system located downstream of the test chamber in the exhaust ducting. The test is started when the test flame is ignited at the front of the test chamber. An electronic photocell system located in the exhaust system downstream from the test chamber is used to plot the smoke developed for use in calculating the smoke developed index while a technician plots the flame spread distance used in determining the flame spread index. The test is run for the 10 minute duration in accordance to the method.

(See Diagrams in the Appendix of this report.)

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.





RJ7637F-1b rev1-DASSO USA-dassoXTR - Classic Espresso - E84-05112022 Date: 5/11/2022 Page 3 of 7

PREPARATION AND CONDITIONING: #N/A

MOUNTING METHOD: #N/A

# ASTM E84 TEST RESULTS:

| CLIENT NAME:          | Dasso USA                                                                            |          | TEST DATE: November 2, 2020. |
|-----------------------|--------------------------------------------------------------------------------------|----------|------------------------------|
| SAMPLE ID:            | dassoXTR Classic Espresso composite bamboo decking material of 2" (51 mm) thickness. |          |                              |
| SAMPLE IGNITION:      |                                                                                      | 00:00    | Minutes / Seconds            |
| MAX FLAME FRONT:      |                                                                                      | 9.1      | Feet                         |
| TIME TO MAXIMUM SPREA | D:                                                                                   | 08:56    | Minutes / Seconds            |
| TEST DURATION:        |                                                                                      | 10:00    | Minutes / Seconds            |
| SUMMARY:              | FLAME SPREAD:<br>SMOKE DEVELOPED:                                                    | 25<br>25 | 26 Unrounded<br>23 Unrounded |

**OBSERVATIONS:** 

A Maximum Flamefront of 9.1 feet was observed at 08:56. The Test was terminated at 10:00.

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.



QAI

RJ7637F-1b rev1-DASSO USA-dassoXTR - Classic Espresso - E84-05112022 Date: 5/11/2022 Page 4 of 7

#### SUMMARY OF ASTM E84 / UL 723 RESULTS:

Because of the possible variations in reproducibility, the results are adjusted to the nearest figure divisible by 5. Smoke Density values over 200 are rounded to the nearest figure divisible by 50.

In order to obtain the Flame Spread Classification, the above results should be compared to the following table:

| NFPA CLASS <sup>1</sup> | IBC CLASS <sup>2</sup> | FLAME SPREAD   | SMOKE DEVELOPED           |
|-------------------------|------------------------|----------------|---------------------------|
| A                       | А                      | 0 through 25   | Less than or equal to 450 |
| В                       | В                      | 26 through 75  | Less than or equal to 450 |
| С                       | С                      | 76 through 200 | Less than or equal to 450 |

#### BUILDING CODES CITED:

1. National Fire Protection Association, ANSI/NFPA No. 101, "Life Safety Code"

2. International Building Code, Chapter 8, Interior Finishes, Section 803.

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.

# **QAI** LABORATORIES



THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.



RJ7637F-1b rev1-DASSO USA-dassoXTR - Classic Espresso - E84-05112022 Date: 5/11/2022 Page 6 of 7



Diagram 2. Test Chamber looking down chamber showing critical dimensions.

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.



Date: 5/11/2022 Page 7 of 7

RJ7637F-1b rev1-DASSO USA-dassoXTR - Classic Espresso - E84-05112022



**REVISION HISTORY** 

07/15/2021: 05/02/2022: Report published. Update to include sample thickness, correct report client sample name (dassoXTR) on report, update to project / report number to corret to RJ7637F-1b

This page intentionally left blank.

\*\*\*<<<END OF TEST REPORT>>>\*\*\*

THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.



Client: Dasso USA Report No: RJ7637 Date: Page 68 of 84





**APPENDIX E – Product Drawings** 







Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 70 of 84





Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 71 of 84





Client: Dasso USA Report No: RJ7637P-1rev1 Revision Date: May 11, 2022 Page 72 of 84

# Appendix G - Installation Instructions



THIS REPORT IS THE CONFIDENTIAL PROPERTY OF THE CLIENT ADDRESSED. THE REPORT MAY ONLY BE REPRODUCED IN FULL. PUBLICATION OF EXTRACTS FROM THIS REPORT IS NOT PERMITTED WITHOUT WRITTEN APPROVAL FROM QAI. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED FOR THE INDIVIDUAL PROJECT FILE REFERENCED. THE RESULTS OF THIS REPORT PERTAIN ONLY TO THE SPECIFIC SAMPLE(S) EVALUATED.

## WWW.QAI.ORG

info@qai.org


Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 73 of 84









Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 75 of 84





Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 76 of 84





Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 77 of 84

|                 | 406.40 [16.00in]                         | :6.40 [216.00in]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ] |
|-----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 20in]           | î                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 2               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| (a)             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 | 29                                       | 1 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 100             | 26 27                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 50 110          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 297             |                                          | - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 | 2                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 | 50                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                 | XTR-DK20-G2-PP decking plank: 20mm)      | (137mm Double trade #0.2mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| SSO XTR         | Staggered 12", 16", 24" Center to Center |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| WWWWAREEDT JUTT | TR-DK20-62-PP.DWG                        | THE PROPERTY OF THE PROPERTY O |   |



Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 78 of 84





Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 79 of 84









Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 81 of 84









Client: Dasso USA Report No: RJ7637P-1rev2 Revision Date: May 17, 2022 Page 83 of 84





## **REVISION HISTORY:**

| DATE       | PAGE                                            | DESCRIPTION                                                                                                                                                                                                                                   | QAI STAFF |  |
|------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| 10/02/2022 | All                                             | Report Issued                                                                                                                                                                                                                                 | QAI       |  |
| 05/11/2022 | 7                                               | Correction to Epic Cognac temperature max deflection values.<br>Correction to COV for Epic Cognac values.                                                                                                                                     |           |  |
|            | 8                                               | Correction to Epic Cognac Moisture Effects test result values.                                                                                                                                                                                |           |  |
|            | 10                                              | Update to UV Resistance to note 2000 hours of ASTM G155 Cycle 1 followed.                                                                                                                                                                     |           |  |
|            |                                                 | Update to UV Resistance to note test span used on coupons.                                                                                                                                                                                    |           |  |
|            |                                                 | Update to correct Standard Deviation and COV errors both products.                                                                                                                                                                            | -         |  |
|            | 12                                              | Correction of Epic Cognac average stiffness in conclusions and table for agreement.                                                                                                                                                           |           |  |
|            | 13                                              | Update to fungal and termite testing to outline test samples used as                                                                                                                                                                          |           |  |
|            | control for exposure to biological test agents. |                                                                                                                                                                                                                                               | N/I       |  |
|            | 14                                              | Update to correct Smoke Developed value for Classic Espresso to 10 to match test report.                                                                                                                                                      | IVIL      |  |
|            | 19, 20                                          | Update to outline method for determining allowable load in pressure (psf) from applied third point loading. Correction to data to convert load based on equivalent stress to correct calculation that changed load to pressure based on area. |           |  |
|            | 24                                              | Update to Fenestration Test Laboratory test report number to correct report numbering conflict.<br>Update to uplift values to remove rounding to 10 psf.                                                                                      |           |  |
|            | Appendices                                      | Update to ASTM E84 test reports to correct product name dassoXTR.                                                                                                                                                                             |           |  |
|            | C, D                                            | include product thickness, and correct report naming convention issue.                                                                                                                                                                        |           |  |
| 17/05/2022 | 2, 12                                           | Correction of page 2 Epic Cognac El values to match page 12 values for strength loss.                                                                                                                                                         | ML        |  |
|            | 10                                              | Correction of ST. DEV and COV values for Classic Espresso.                                                                                                                                                                                    |           |  |
|            |                                                 |                                                                                                                                                                                                                                               |           |  |
|            |                                                 |                                                                                                                                                                                                                                               |           |  |
|            |                                                 |                                                                                                                                                                                                                                               |           |  |

## \*\*\*\*\*\*<<<<END OF REPORT>>>\*\*\*\*\*